
Calcolo           (2022) 59:42 
https://doi.org/10.1007/s10092-022-00477-2

Exponential convergence of some recent numerical
quadrature methods for Hadamard finite parts of singular
integrals of periodic analytic functions

Avram Sidi1

Received: 29 March 2022 / Revised: 14 July 2022 / Accepted: 18 July 2022
© The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT) 2022

Abstract
Let

I [ f ] = =∫
b

a
f (x) dx, f (x) = g(x)

(x − t)m
, m = 1, 2, . . . , a < t < b,

assuming that g ∈ C∞[a, b] such that f (x) is T -periodic, T = b − a, and f (x) ∈
C∞(Rt ) with Rt = R\{t + kT }∞k=−∞. Here =∫ b

a f (x) dx stands for the Hadamard

Finite Part (HFP) of the singular integral ∫ b
a f (x) dx that does not exist in the regular

sense. In a recent work, we unified the treatment of these HFP integrals by using a
generalization of the Euler–Maclaurin expansion due to the author and developed a
number of numerical quadrature formulas ̂T (s)

m,n[ f ] of trapezoidal type for I [ f ] for all
m. For example, three numerical quadrature formulas of trapezoidal type result from
this approach for the case m = 3, and these are

̂T (0)
3,n [ f ] = h

n−1
∑

j=1

f (t + jh) − π2

3
g′(t) h−1 + 1

6
g′′′(t) h, h = T

n
,

̂T (1)
3,n [ f ] = h

n
∑

j=1

f (t + jh − h/2) − π2 g′(t) h−1, h = T

n
,

̂T (2)
3,n [ f ] = 2h

n
∑

j=1

f (t + jh − h/2) − h

2

2n
∑

j=1

f (t + jh/2 − h/4), h = T

n
.
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For all m and s, we showed that all of the numerical quadrature formulas ̂T (s)
m,n[ f ] have

spectral accuracy; that is,

̂T (s)
m,n[ f ] − I [ f ] = o(n−μ) as n → ∞ ∀μ > 0.

In this work, we continue our study of convergence and extend it to functions f (x) that
possess certain analyticity properties. Specifically, we assume that f (z), as a function
of the complex variable z, is also analytic in the infinite strip |Im z| < σ for some
σ > 0, excluding the poles of order m at the points t + kT , k = 0,±1,±2, . . . . For
m = 1, 2, 3, 4 and relevant s, we prove that

̂T (s)
m,n[ f ] − I [ f ] = O

(

exp(−2πnρ/T )
)

as n → ∞ ∀ρ < σ.

Keywords Hadamard finite part · Cauchy Principal Value · Singular integrals ·
Hypersingular integrals · Supersingular integrals · Numerical quadrature ·
Trapezoidal-like rules

Mathematics Subject Classification 41A55 · 41A60 · 45B05 · 45E05 · 65B15 ·
65D30 · 65D32

1 Introduction and background

In a recent work [10], we considered the efficient numerical computation of

I [ f ] = =∫
b

a
f (x) dx, f (x) = g(x)

(x − t)m , g ∈ C∞[a, b], m = 1, 2, . . . , a < t < b,

(1.1)

such that

f (x) is T -periodic, f ∈ C∞(Rt ), Rt = R\{t + kT }∞k=−∞, T = b − a. (1.2)

Clearly, the integrals ∫ b
a f (x) dx are not defined in the regular sense, but they are

defined in the sense of Hadamard Finite Part (HFP), the HFP of ∫ b
a f (x) dx being

commonly denoted by =∫ b
a f (x) dx .1

By invoking a recent generalization of theEuler–Maclaurin (E–M) expansion devel-
oped in Sidi [8, Theorem 2.3] that also applies to both regular and HFP integrals, we
unified the treatments of the HFP integrals defined in (1.1)–(1.2) to cover all m.
We thus derived a number of very effective numerical quadrature formulas ̂T (s)

m,n[ f ],
1 When m = 1, the HFP of ∫ b

a f (x) dx is also called its Cauchy Principal Value (CPV) and the accepted

notation for it is –∫ b
a f (x) dx . When m = 2,=∫ b

a f (x) dx is called a hypersingular integral, and when m = 3,

=∫ b
a f (x) dx is called a supersingular integral.

We reserve the notation ∫ b
a u(x) dx for integrals that exist in the regular sense.
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s = 0, 1, . . . , �(m + 1)/2	, for I [ f ] and all m ≥ 1.2 (Recall that �a	 stands for the
smallest integer greater than or equal to a.)

With h = T /n, n = 1, 2, . . . , and depending on whether m is even or odd, the
formulas ̂T (0)

m,n[ f ], the most basic of the formulas ̂T (s)
m,n[ f ], are obtained directly from

the generalized E–M expansion and read as follows:

1. For m = 2r , r = 1, 2, . . .:

̂T (0)
2r ,n[ f ] = h

n−1
∑

j=1

f (t + jh) − 2
r

∑

i=0

g(2i)(t)

(2i)! ζ(2r − 2i)h−2r+2i+1. (1.3)

2. For m = 2r + 1, r = 0, 1, 2, . . .:

̂T (0)
2r+1,n[ f ] = h

n−1
∑

j=1

f (t + jh) − 2
r

∑

i=0

g(2i+1)(t)

(2i + 1)! ζ(2r − 2i)h−2r+2i+1. (1.4)

Here ζ(z) is the Riemann Zeta function.

Upon invoking the known fact that

ζ(2k) = (−1)k+1 (2π)2k B2k

2(2k)! , k = 0, 1, . . . ; Bs Bernoulli numbers,

(1.3) and (1.4) can be expressed more revealingly as

̂T (0)
2r ,n[ f ] = h

n−1
∑

j=1

f (t + jh) +
r

∑

i=0

(−1)i g(2r−2i)(t)

(2r − 2i)!
(2π)i B2i

(2i)! h−2i+1, (1.5)

and

̂T (0)
2r+1,n[ f ] = h

n−1
∑

j=1

f (t + jh) +
r

∑

i=0

(−1)i g(2r−2i+1)(t)

(2r − 2i + 1)!
(2π)i B2i

(2i)! h−2i+1. (1.6)

Note that the summations
∑r

i=0 in (1.5) and (1.6) are linear combinations of
g(m)(t)h, g(m−2)(t)h−1, g(m−4)(t)h−3, . . . g(m−2r)(t)h1−2r , and this requires the
computation of several derivatives of g(x), which may be inconvenient or difficult
in certain cases. This prompts us to eliminate some or all of these derivatives, starting
with the highest order derivative g(m)(t), to obtain formulas less dependent on (or
even independent of) the derivatives of g(x). This amounts to eliminating the pow-
ers of h from these summations in the order h1, h−1, h−3, . . . , h1−2r , which we can

2 A similar, yet somewhat different, treatment for the cases m = 1 and m = 2 was given earlier in Sidi [9].
The treatment of [10] was recently extended by the author in [12] to deal with nonperiodic HFP integrals

=∫ b
a g(x)/(x − t)m dx , m = 1, 2, . . . , where g(x) is allowed to have arbitrary integrable singularities at the
endpoints.
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accomplish by a process that resembles the Richardson extrapolation in the reverse
direction. (ForRichardson extrapolation, seeSidi [6,Chapter 1], for example.) For each
s ≥ 1, we obtain ̂T (s)

m,n[ f ] as a linear combination of ̂T (0)
m,n[ f ], ̂T (0)

m,2n[ f ], ̂T (0)
m,4n[ f ],…,

̂T (0)
m,2s n[ f ], by eliminating the terms involving the s powers h1, h−1, h−3, . . . , h3−2s ,

in this order. Thus, ̂T (s)
m,n[ f ] are all of the form

̂T (s)
m,n[ f ] =

s
∑

k=0

α
(s)
k

̂T (0)
m,2k n

[ f ],
s

∑

k=0

α
(s)
k = 1; α

(s)
k independent ofm, n. (1.7)

With s = 1, 2, 3, for example, we have

̂T (1)
m,n[ f ] = −̂T (0)

m,n[ f ] + 2̂T (0)
m,2n[ f ] (1.8a)

̂T (2)
m,n[ f ] = −2̂T (0)

m,n[ f ] + 5̂T (0)
m,2n[ f ] − 2̂T (0)

m,4n[ f ] (1.8b)

̂T (3)
m,n[ f ] = −16

7
̂T (0)

m,n[ f ] + 6̂T (0)
m,2n[ f ] − 3̂T (0)

m,4n[ f ] + 2

7
̂T (0)

m,8n[ f ] (1.8c)

For m = 1, 2, 3, 4, this procedure results in the following quadrature formulas.

1. The case m=1:

̂T (0)
1,n [ f ] = h

n−1
∑

j=1

f (t + jh) + g′(t)h (1.9a)

̂T (1)
1,n [ f ] = h

n
∑

j=1

f (t + jh − h/2) (1.9b)

2. The case m=2:

̂T (0)
2,n [ f ] = h

n−1
∑

j=1

f (t + jh) − π2

3
g(t)h−1 + 1

2
g′′(t)h (1.10a)

̂T (1)
2,n [ f ] = h

n
∑

j=1

f (t + jh − h/2) − π2g(t)h−1 (1.10b)

̂T (2)
2,n [ f ] = 2h

n
∑

j=1

f (t + jh − h/2) − h

2

2n
∑

j=1

f (t + jh/2 − h/4) (1.10c)
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3. The case m=3:

̂T (0)
3,n [ f ] = h

n−1
∑

j=1

f (t + jh) − π2

3
g′(t)h−1 + 1

6
g′′′(t)h (1.11a)

̂T (1)
3,n [ f ] = h

n
∑

j=1

f (t + jh − h/2) − π2g′(t)h−1 (1.11b)

̂T (2)
3,n [ f ] = 2h

n
∑

j=1

f (t + jh − h/2) − h

2

2n
∑

j=1

f (t + jh/2 − h/4) (1.11c)

4. The case m=4:

̂T (0)
4,n [ f ] = h

n−1
∑

j=1

f (t + jh) − π4

45
g(t)h−3 − π2

6
g′′(t)h−1 + 1

24
g(4)(t)h

(1.12a)

̂T (1)
4,n [ f ] = h

n
∑

j=1

f (t + jh − h/2) − π4

3
g(t)h−3 − π2

2
g′′(t)h−1 (1.12b)

̂T (2)
4,n [ f ] = 2h

n
∑

j=1

f (t + jh − h/2) − h

2

2n
∑

j=1

f (t + jh/2 − h/4) + 2π4g(t)h−3

(1.12c)

̂T (3)
4,n [ f ] = 16h

7

n
∑

j=1

f (t + jh − h/2) − 5h

7

2n
∑

j=1

f (t + jh/2 − h/4)

+ h

28

4n
∑

j=1

f (t + jh/4 − h/8) (1.12d)

In the process of derivation of our methods, we also proved in [10, Theorem 4.1]
that all the quadrature formulas ̂T (s)

m,n[ f ] have spectral convergence. We reproduce
this theorem here for convenience. (For more on the case m = 3, see also [11].)

Theorem 1.1 Let f (x) be as in (1.1)–(1.2), and let the numerical quadrature formulas
̂T (s)

m,n[ f ] be as in (1.7). Then limn→∞ ̂T (s)
m,n[ f ] = I [ f ], and we have

̂T (s)
m,n[ f ] − I [ f ] = o(n−μ) as n → ∞ ∀μ > 0. (1.13)

In words, the errors in the ̂T (s)
m,n[ f ] tend to zero as n → ∞ faster than every negative

power of n.

We note that all the quadrature formulas ̂T (s)
m,n[ f ] possess the following favorable

properties:
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1. Unlike most quadrature formulas in the literature, they are compact in that they
consist of trapezoidal-like rules with simple, yet sophisticated and unexpected,
“correction” terms to account for the singularity at x = t .

2. They have a unified convergence theory that follows directly from the way they are
derived.

3. Unlike most quadrature formulas in the literature, which attain limited accuracies,
our quadrature formulas enjoy spectral accuracy.

4. Because they enjoy spectral accuracy, when applied in floating-point arithmetic,
they are much more stable numerically than existing methods.

For all the above, we refer the reader to [10].
In this work, we expand the convergence theory of Theorem 1.1, for m = 1, 2, 3, 4,

to the cases in which the function f (x), in addition to being as in (1.1)–(1.2), has an
analytic continuation f (z) as a function of the complex variable z for |Im z| < σ , for
some σ > 0. Thus, the main result of this paper is the following theorem that is much
stronger than Theorem 1.1 under the given conditions:

Theorem 1.2 Let f (x) be as in (1.1)–(1.2). Assume also that, as a function of the
complex variable z, f (z) is T -periodic and analytic in the infinite strip Dσ ,

Dσ = {z ∈ C : |Im z| < σ }, σ > 0,

except the points z = t + kT , k = 0,±1,±2, . . . , where it has poles of order m.
Then, for m = 1, 2, 3, 4 and all relevant s, there holds

∣

∣̂T (s)
m,n[ f ] − I [ f ]∣∣ ≤ Ms(ρ)e−2nπρ/T ∀ρ < σ,

for some finite Ms(ρ) that depends only on f (z) and s.

Remarks 1. It is easy to see from this theorem that, for all practical purposes,

̂T (s)
m,n[ f ] − I [ f ] = O

(

e−2nπσ/T )

as n → ∞.

2. Even though Theorem 1.2 concerns only the cases m = 1, 2, 3, 4, we conjecture
that it holds true for every m. We invite the interested reader to try to prove this
conjecture. The appendix to this work should be of help in extending Theorem 1.2
to m = 5, 6, . . . .

3. We refer the reader to the numerical examples in [10] that clearly exhibit the
exponential convergence of the ̂T (s)

m,n[ f ] when f (z) is T -periodic and analytic in
a strip Dσ of the complex plane.

2 Preliminaries to the proof of Theorem 1.2

We prove Theorem 1.2 in three stages:

1. We first show that, for each m, I [ f ] can be expressed as a regular integral
∫ T
0 φ(x) dx , where φ(x) is a T -periodic function on R that can be continued
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analytically to the entire set Dσ and is T -periodic and analytic in Dσ . We actually
construct the function φ(x) explicitly.

2. We next show that the quadrature formula ̂T (0)
m,n[ f ] for I [ f ] is identical to the

classical n-point trapezoidal rule Tn[φ] = h
∑n−1

j=0 φ( jh), h = T /n, for the

integral ∫ T
0 φ(x) dx . This allows us to conclude that ̂T (0)

m,n[ f ] converges to I [ f ]
exponentially in n; that is,

∣

∣̂T (0)
m,n[ f ] − I [ f ]∣∣ ≤ M0(ρ)e−2nπρ/T ∀ρ < σ.

We note that this result is based on the following theorem by Davis [3]:

Theorem 2.1 Let φ(z) be T -periodic and analytic in a strip Dσ of the z-plane, where

Dσ = {z ∈ C : |Im z| < σ }.

Let

I [φ] = ∫
T

0
φ(x) dx; Tn[φ] = h

n−1
∑

j=0

φ( jh), h = T

n
.

Then, there holds

∣

∣Tn[φ] − I [φ]∣∣ ≤ T W (ρ)
e−2nπρ/T

1 − e−2nπρ/T
∀ρ < σ,

where

W (ρ) = max
x∈R

∣

∣φ(x + iρ)
∣

∣ + max
x∈R

∣

∣φ(x − iρ)
∣

∣.

3. Following the treatment of ̂T (0)
m,n[ f ], we invoke (1.7) to conclude that each ̂T (s)

m,n[ f ],
s ≥ 1, also converges to I [ f ] exponentially in n, and at the same rate as ̂T (0)

m,n[ f ].
The idea is that, by (1.7),

̂T (s)
m,n[ f ] − I [ f ] =

s
∑

k=0

α
(s)
k

(

̂T (0)
m,2k n

[ f ] − I [ f ]) because
s

∑

k=0

α
(s)
k = 1,

from which we obtain

∣

∣̂T (s)
m,n[ f ] − I [ f ]∣∣ ≤

s
∑

k=0

∣

∣α
(s)
k

∣

∣

∣

∣̂T (0)
m,2k n

[ f ] − I [ f ]∣∣

≤
( s

∑

k=0

∣

∣α
(s)
k

∣

∣

)

M0(ρ)e−2nπρ/T
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that is stated in Theorem1.2. In view of Theorem2.1, we identify M0(ρ) as T W (ρ)

and Ms(ρ) as
(∑s

k=0

∣

∣α
(s)
k

∣

∣

)

M0(ρ). As this completes the proof of Theorem 1.2,
in the sequel, we need to carry out only the first and second stages mentioned
above.

The first of the three stages above can be achieved in a simple way for m = 1,
as we will see in Sect. 3. For m ≥ 2, however, this stage demands some clever
construction. The problem here is that we cannot make use of the representation
f (x) = g(x)/(x − t)m in a direct way to construct φ(x), the reason being that neither
g(x) nor (x − t)m is T -periodic, and this does not allow us to proceed. Therefore, we
aim to express f (x) differently as f (x) = u(x)vm(x), such that,

1. as functions of the complex variable z, both u(z) and vm(z) are T -periodic in Dσ ,
2. u(z) is analytic in Dσ ,
3. vm(z) is nonzero and meromorphic in Dσ with poles of order m at z = t + kT ,

k = 0,±1,±2, . . . .3

We choose

vm(z) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

exp
(

iπ(z−t)
T

)

sinm π(z−t)
T

, m = 1, 3, 5, . . . ,

1

sinm π(z−t)
T

, m = 2, 4, 6, . . . .
(2.1)

Note that g(x) defines u(x) uniquely and vice versa.4

To achieve the second stage above, we start by expressing I [ f ] = =∫ b
a f (x) dx as

the HFP integral of another function as follows: Since f (x) is T -periodic, there holds

I [ f ] = =∫
t+T

t
f (x) dx ⇒ I [ f ] = =∫

T

0
f (t + y) dy.

Again, by T -periodicity,

I [ f ] = =∫
t

t−T
f (x) dx ⇒ I [ f ] = =∫

T

0
f (t − y) dy.

Therefore,

I [ f ] = =∫
T

0

1

2

[

f (t + y) + f (t − y)
]

dy. (2.2)

Following this, we replace f (x) by its representation as u(x)vm(x) and proceed to the
construction of φ(x). (We will show how this is done for each m in Sects. 3–6.)

3 If vm (z) vanishes at some point in Dσ but f (z) does not, then u(z) must have a pole at that same point,
which is not consistent with our demand that u(z) be analytic in Dσ .
4 Observe that (i)when m is an even integer, vm (x) is real-valued, while (ii)when m is an odd integer,
vm (x) is complex-valued. Consequently, when f (x) is a real-valued function, (i)u(x) is real-valued if m
is an even integer, while (ii)u(x) is complex-valued if m is an odd integer.
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Next, the trapezoidal sum

h
n−1
∑

j=1

1

2

[

f (t + jh) + f (t − jh)
]

, h = T

n

for the HFP integral in (2.2) will feature in all our proofs. By T -periodicity of f (x),
we have

n−1
∑

j=1

1

2

[

f (t + jh) + f (t − jh)
] =

n−1
∑

j=1

1

2

[

f (t + jh) + f (t − jh + T )
]

,

which, by the fact that T = nh, can be rewritten as

n−1
∑

j=1

1

2

[

f (t + jh) + f (t − jh)
] =

n−1
∑

j=1

1

2

[

f (t + jh) + f (t + (n − j)h)
]

.

But { f (t + (n − j)h)}n−1
j=1 = { f (t + jh)}n−1

j=1. Therefore,

n−1
∑

j=1

1

2

[

f (t + jh) + f (t − jh)
] =

n−1
∑

j=1

f (t + jh), h = T

n
. (2.3)

We make repeated use of this in our proofs.
In addition, we shall make use of the HFP integrals5

=∫
T

0

dy

sin2r π y
T

= 0, r = 1, 2, . . . , (2.4)

and also of the summation rules

n−1
∑

j=1

1

sin2 jπ
n

= n2 − 1

3
,

n−1
∑

j=1

1

sin4 jπ
n

= n4 + 10n2 − 11

45
, (2.5)

which can be found in Gradshteyn and Ryzhik [4, §15.823(3d)], for example.6

In conclusion, what remains now is

1. to construct a T -periodic function φ(x) that is integrable in the regular sense such
that ∫ T

0 φ(x) dx = =∫ T
0 f (x) dx ,

2. to show that, as a function of the complex variable z,φ(z) is T -periodic and analytic
in Dσ as well,

5 See the appendix for a proof of this fact.
6 See the appendix for the treatment of the general case of

∑n−1
j=1 1/(sin

jπ
n )2r , which turns out to be a

polynomial in n2 of degree r , for r = 1, 2, . . . , with rational coefficients.
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3. to construct Tn[φ], the trapezoidal rule approximation for ∫ T
0 φ(x) dx , and

4. to prove that Tn[φ] = ̂T (0)
m,n[ f ].

Clearly, in order to achieve all this, we also need to re-express ̂T (0)
m,n[ f ] in

(1.9a)–(1.12a) by expressing the “correction” terms involving g(i)(t) in terms of the
appropriate u( j)(t). We actually have

g(t) =
(

T

π

)m

u(t) ∀ m = 1, 2, . . . ,

g(i)(t) =
i

∑

j=0

αi, j u( j)(t), i ≥ 1, αi, j constants independent of t . (2.6)

For m = 1, 2, 3, 4, these are given in (3.8), (4.3), (5.3), and (6.3).

3 Proof of Theorem 1.2 form = 1

Invoking f (x) = g(x)/(x − t) in (2.2), we obtain

I [ f ] = =∫
T

0
φ(y) dy, φ(y) = f (t + y) + f (t − y)

2
= g(t + y) − g(t − y)

2y
. (3.1)

Now, φ(y) is T -periodic and regular for all y ∈ (0, T ) because f (x) ∈ C∞(0, T ).
φ(y) is regular also at y = 0 (and at y = T by T -periodicity) since

φ(0) = lim
y→0

φ(y) = g′(t). (3.2)

Therefore, as a function of the complex variable z, φ(z) is analytic and T -periodic in
Dσ . Consequently, =∫ T

0 φ(y) dy is actually a regular integral.

Applying the trapezoidal rule to the regular integral ∫ T
0 φ(y) dy and invoking (3.2),

we first obtain

Tn[φ] = h
n−1
∑

j=0

φ( jh) = h
n−1
∑

j=1

φ( jh) + g′(t)h, h = T

n
. (3.3)

Next, by (3.1),

n−1
∑

j=1

φ( jh) =
n−1
∑

j=1

g(t + jh) − g(t − jh)

2 jh
=

n−1
∑

j=1

1

2
[ f (t + jh) + f (t − jh)],
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which, by (2.3), becomes

n−1
∑

j=1

φ( jh) =
n−1
∑

j=1

f (t + jh). (3.4)

Substituting this into (3.3), we finally have

Tn[φ] = h
n−1
∑

j=1

f (t + jh) + g′(t)h, (3.5)

hence Tn[φ] = ̂T (0)
1,n [ f ] by (1.9a).

To complete the picture, we would like to express g′(t) that appears in (1.9a) in
terms of the appropriate u(i)(t), even though we were able to manage without this in
our proof. Starting with

f (x) = exp(iπ(x−t)
T )

sin π(x−t)
T

u(x), (3.6)

we relate g(x) to u(x) via

g(x) = (x − t)
exp(iπ(x−t)

T )

sin π(x−t)
T

u(x). (3.7)

Letting ξ = π(x − t)/T for short and noting that

ξ
eiξ

sin ξ
= 1 + iξ + O(ξ2) as ξ → 0,

and expanding the right-hand side of (3.7) about x = t , we have

g(x) = T

π

[

1 + iξ + O(ξ2)
][

u(t) + u′(t)(x − t) + O(ξ2)
]

as x → t .

Thus we identify

g(t) = T

π
u(t), g′(t) = iu(t) + T

π
u′(t). (3.8)

With this, (1.9a) becomes

̂T (0)
1,n [ f ] = h

n−1
∑

j=1

f (t + jh) + iu(t)h + T

π
u′(t)h. (3.9)
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4 Proof of Theorem 1.2 form = 2

Let us express f (x) as

f (x) = u(x)

sin2 π(x−t)
T

. (4.1)

Thus, g(x) is related to u(x) via

g(x) = (x − t)2 f (x) = (x − t)2

sin2 π(x−t)
T

u(x). (4.2)

Clearly, g(x) is guaranteed to be infinitely differentiable on (a, b) when a < t < b.
We start by expressing g(t) and g′′(t) in (1.10a) in terms of u(x) and derivatives

of u(x) at x = t . Letting ξ = π(x − t)/T for short and noting that

ξ2

sin2 ξ
= 1 + ξ2

3
+ O(ξ4) as ξ → 0,

we expand the right-hand side of (4.2) about x = t . We have

g(x) =
(

T

π

)2[

1 + ξ2

3
+ O(ξ4)

][ 2
∑

k=0

u(k)(t)

k! (x − t)k + O(ξ3)

]

as x → t .

We then identify

g(t) =
(

T

π

)2

u(t), g′(t) =
(

T

π

)2

u′(t), g′′(t) =
(

T

π

)2

u′′(t) + 2

3
u(t). (4.3)

Substituting these into (1.10a), and invoking also T = nh, we obtain

̂T (0)
2,n [ f ] = h

n−1
∑

j=1

f (t + jh) −
(

n2 − 1

3

)

u(t)h + 1

2

(

T

π

)2

u′′(t)h. (4.4)

We next show that I [ f ] can be expressed as a regular integral ∫ T
0 φ(y) dy, φ(z)

being a T -periodic function that is analytic in the strip Dσ . Substituting (4.1) into
(2.2), and simplifying, we have

I [ f ] = =∫
T

0

[

u(t + y) + u(t − y)

2 sin2 π y
T

]

dy,
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which continues to be defined only in the sense of HFP. Upon subtracting 2u(t) from
the numerator of the integrand (and adding it back), we obtain

I [ f ] = =∫
T

0

[

u(t + y) + u(t − y) − 2u(t)

2 sin2 π y
T

]

dy + u(t)=∫
T

0

1

sin2 π y
T

dy.

Since =∫ T
0 1/(sin2 π y

T ) dy = 0, we have

I [ f ] = =∫
T

0
φ(y) dy, φ(y) = u(t + y) + u(t − y) − 2u(t)

2 sin2 π y
T

. (4.5)

Now, φ(y) is T -periodic and regular for all y ∈ (0, T ) because f (x) ∈ C∞(0, T ).
φ(y) is regular also at y = 0 (and at y = T by T -periodicity) since

φ(0) = lim
y→0

φ(y) = 1

2

(

T

π

)2

u′′(t), (4.6)

which can be obtained by two applications of L’Hôpital’s rule or by simply expanding
u(t+y)+u(t−y)−2u(t) in a Taylor series about y = 0. Therefore, as a function of the
complex variable z, φ(z) is analytic and T -periodic in Dσ . Consequently, =∫ T

0 φ(y) dy
is actually a regular integral.

Applying the trapezoidal rule to the regular integral ∫ T
0 φ(y) dy and invoking (4.6),

we first obtain

Tn[φ] = h
n−1
∑

j=0

φ( jh) = h
n−1
∑

j=1

φ( jh) + 1

2

(

T

π

)2

u′′(t)h, h = T

n
. (4.7)

Next, by (4.5),

n−1
∑

j=1

φ( jh) =
n−1
∑

j=1

u(t + jh) + u(t − jh)

2 sin2 jπ
n

− u(t)
n−1
∑

j=1

1

sin2 jπ
n

.

Now, by (4.1) and (2.3),

n−1
∑

j=1

u(t + jh) + u(t − jh)

2 sin2 jπ
n

=
n−1
∑

j=1

1

2
[ f (t + jh) + f (t − jh)] =

n−1
∑

j=1

f (t + jh).

Combining these in (4.7), and invoking also (2.5), we obtain

Tn[φ] = h
n−1
∑

j=1

f (t + jh) −
(

n2 − 1

3

)

u(t)h + 1

2

(

T

π

)2

u′′(t)h. (4.8)
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Comparing (4.8) with (4.4), we realize that Tn[φ] = ̂T (0)
2,n [ f ].

5 Proof of Theorem 1.2 form = 3

Let us express f (x) as

f (x) = exp(iπ(x−t)
T )

sin3 π(x−t)
T

u(x). (5.1)

Thus, g(x) is related to u(x) via

g(x) = (x − t)3 f (x) = (x − t)3 exp(iπ(x−t)
T )

sin3 π(x−t)
T

u(x). (5.2)

Clearly, g(x) is guaranteed to be infinitely differentiable on (a, b) when a < t < b.
We start by expressing g′(t) and g′′′(t) in (1.11a) in terms of u(x) and derivatives

of u(x) at x = t . Letting ξ = π(x − t)/T for short and noting that

ξ3eiξ

sin3 ξ
= 1 + iξ + i

ξ3

3
+ O(ξ4) as ξ → 0,

we expand the right-hand side of (5.2) about x = t . We have

g(x) =
(

T

π

)3[

1 + iξ + i
ξ3

3
+ O(ξ4)

][ 3
∑

k=0

u(k)(t)

k! (x − t)k + O(ξ4)

]

as x → t .

We then identify

g(t) =
(

T

π

)3

u(t),

g′(t) =
(

T

π

)3[

u′(t) + i

(

π

T

)

u(t)

]

,

g′′(t) =
(

T

π

)3[

u′′(t) + i

(

π

T

)

2u′(t)
]

,

g′′′(t) =
(

T

π

)3[

u′′′(t) + i

(

π

T

)

3u′′(t) + i

(

π

T

)3

2u(t)

]

. (5.3)

Following this, we also rewrite (5.1) in the form

f (x) = f1(x) + i f2(x); f1(x) = cos π(x−t)
T

sin3 π(x−t)
T

u(x), f2(x) = u(x)

sin2 π(x−t)
T

. (5.4)
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Therefore, we also have
I [ f ] = I [ f1] + iI [ f2]. (5.5)

Substituting (5.3) and (5.4) into (1.11a), and invoking also T = nh, we obtain

̂T (0)
3,n [ f ] = Q1 + iQ2, (5.6)

where

Q1 =h
n−1
∑

j=1

f1(t + jh) − n2

3

(

T

π

)

u′(t)h + 1

6

(

T

π

)3

u′′′(t)h, (5.7)

Q2 =h
n−1
∑

j=1

f2(t + jh) −
(

n2 − 1

3

)

u(t)h + 1

2

(

T

π

)2

u′′(t)h. (5.8)

Therefore,

̂T (0)
3,n [ f ] = h

n−1
∑

j=1

f (t + jh) − i

(

n2 − 1

3

)

u(t)h − n2

3

(

T

π

)

u′(t)h

+ i
1

2

(

T

π

)2

u′′(t)h + 1

6

(

T

π

)3

u′′′(t)h. (5.9)

We now turn to the study of I [ f1] = =∫ b
a f1(x) dx and I [ f2] = =∫ b

a f2(x) dx .
Applying (2.2) to f1(x), we first have

I [ f1] = =∫
T

0

cos π y
T

2 sin3 π y
T

[u(t + y) − u(t − y)] dy,

which continues to be defined only in the sense of HFP. Upon subtracting
2( T

π
)u′(t) tan π y

T from the square brackets (and adding it back), we obtain

I [ f1] = =∫
T

0

cos π y
T

2 sin3 π y
T

[

u(t + y) − u(t − y) − 2

(

T

π

)

u′(t) tan
(

π y

T

)]

dy

+T

π
u′(t)=∫

T

0

1

sin2 π y
T

dy.

Since =∫ T
0 1/(sin2 π y

T ) dy = 0, we have

I [ f1] = =∫
T

0
φ1(y) dy, φ1(y) = cos π y

T

2 sin3 π y
T

[

u(t+y)−u(t−y)−2

(

T

π

)

u′(t) tan π y

T

]

.

(5.10)
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Now, φ1(y) is T -periodic and regular for all y ∈ (0, T ) because f (x) ∈ C∞(0, T ).
φ1(y) is regular also at y = 0 (and at y = T by T -periodicity) since

φ1(0) = lim
y→0

φ1(y) = 1

6

(

T

π

)3

u′′′(t) − 1

3

(

T

π

)

u′(t), (5.11)

which can be obtained from (5.10) by noting that

cos ξ

sin3 ξ
= ξ−3[1 + O(ξ4)

]

and tan ξ = ξ

[

1 + ξ2

3
+ O(ξ4)

]

as ξ → 0

and

u(t + y) − u(t − y) = 2u′(t)y + 1

3
u′′′(t)y3 + O(y5) as y → 0.

Therefore, as a function of the complex variable z, φ1(z) is analytic and T -periodic in
Dσ . Consequently, =∫ T

0 φ1(y) dy is actually a regular integral.

Applying the trapezoidal rule to the regular integral ∫ T
0 φ1(y) dy and invoking

(5.11), we first obtain

Tn[φ1] = h
n−1
∑

j=0

φ1( jh) = h
n−1
∑

j=1

φ1( jh)− 1

3

(

T

π

)

u′(t)h+ 1

6

(

T

π

)3

u′′′(t)h, h = T

n
.

(5.12)
Next, by (4.5),

n−1
∑

j=1

φ1( jh) =
n−1
∑

j=1

cos jπ
n

2 sin3 jπ
n

[

u(t + jh) − u(t − jh)
] −

(

T

π

)

u′(t)
n−1
∑

j=1

1

sin2 jπ
n

.

Now, by (2.3),

n−1
∑

j=1

cos jπ
n

2 sin3 jπ
n

[

u(t + jh) − u(t − jh)
] =

n−1
∑

j=1

1

2

[

f1(t + jh) + f1(t − jh)
]

=
n−1
∑

j=1

f1(t + jh).

By this and by (2.5), we thus have that

n−1
∑

j=1

φ1( jh) =
n−1
∑

j=1

f1(t + jh) −
(

n2 − 1

3

)(

T

π

)

u′(t).
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Therefore,

Tn[φ1] = h
n−1
∑

j=1

f1(t + jh) − n2

3

(

T

π

)

u′(t)h + 1

6

(

T

π

)3

u′′′(t)h.

Comparing this with (5.7), we realize that Tn[φ1] = Q1.
As for I [ f2], we already know from Sect. 4 that

I [ f2] = ∫
T

0
φ2(y) dy, φ2(y) = u(t + y) + u(t − y) − 2u(t)

2 sin2 π y
T

,

and Tn[φ2] = ̂T (0)
2,n [ f2]. In addition, by (5.8) and (4.8), Q2 = ̂T (0)

2,n [ f2], hence Q2 =
Tn[φ2] as well. Therefore, letting φ(y) = φ1(y)+ iφ2(y), and recalling (5.9), we have

∫
T

0
φ(y) dy = I [ f ] and Tn[φ] = Tn[φ1] + iTn[φ2] = Q1 + iQ2 = ̂T (0)

3,n [ f ].

6 Proof of Theorem 1.2 form = 4

Let us express f (x) as

f (x) = u(x)

sin4 π(x−t)
T

. (6.1)

Thus, g(x) is related to u(x) via

g(x) = (x − t)4 f (x) = (x − t)4

sin4 π(x−t)
T

u(x). (6.2)

Clearly, g(x) is guaranteed to be infinitely differentiable on (a, b) when a < t < b.
We start by expressing g(t), g′′(t), and g(4)(t) in (1.12a) in terms of u(x) and

derivatives of u(x) at x = t . Letting ξ = π(x − t)/T for short and noting that

ξ4

sin4 ξ
= 1 + 2

3
ξ2 + 11

45
ξ4 + O(ξ6) as ξ → 0,

we expand the right-hand side of (6.2) about x = t . We have

g(x) =
(

T

π

)4[

1 + 2

3
ξ2 + 11

45
ξ4 + O(ξ6)

][ 4
∑

k=0

u(k)(t)

k! (x − t)k + O(ξ5)

]

as x → t .
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We then identify

g(t) =
(

T

π

)4

u(t),

g′(t) =
(

T

π

)4

u′(t),

g′′(t) =
(

T

π

)4[

u′′(t) + 4

3

(

π

T

)2

u(t)

]

,

g′′′(t) =
(

T

π

)4[

u′′′(t) + 4

(

π

T

)2

u′(t)
]

,

g(4)(t) =
(

T

π

)4[

u(4)(t) + 8

(

π

T

)2

u′′(t) + 88

15

(

π

T

)4

u(t)

]

. (6.3)

Substituting these into (1.12a), we first obtain

̂T (0)
4,n [ f ] = h

n−1
∑

j=1

f (t + jh) +
(

− T 4

45
h−3 − 2T 2

9
h−1 + 11

45
h

)

u(t)

+
(

− T 4

6π2 h−1 + T 2

3π2 h

)

u′′(t) +
(

T 4

24π4 h

)

u(4)(t),

which, upon invoking T = nh where necessary, becomes

̂T (0)
4,n [ f ] = h

n−1
∑

j=1

f (t + jh) −
(

n4 + 10n2 − 11

45

)

u(t)h

−
(

n2 − 2

6

)(

T

π

)2

u′′(t)h + 1

24

(

T

π

)4

u(4)(t)h. (6.4)

We now turn to the study of I [ f ]. Applying (2.2), we first have

I [ f ] = =∫
T

0

u(t + y) + u(t − y)

2 sin4 π y
T

dy,

which continues to be defined only in the sense of HFP. Upon subtracting 2[u(t) +
1
2 (

T
π
)2u′′(t) sin2 π y

T ] from the numerator of the integrand (and adding it back), we
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obtain

I [ f ] = =∫
T

0

u(t + y) + u(t − y) − 2u(t) − ( T
π
)2u′′(t) sin2 π y

T

2 sin4 π y
T

dy

+ u(t)=∫
T

0

dy

sin4 π y
T

+ 1

2

(

T

π

)2

u′′(t)=∫
T

0

dy

sin2 π y
T

.

Since =∫ T
0 dy/(sin2 π y

T ) = 0 and =∫ T
0 dy/(sin4 π y

T ) = 0, we have

I [ f ] = =∫
T

0
φ(y) dy, φ(y) = u(t + y) + u(t − y) − 2u(t) − ( T

π
)2u′′(t) sin2 π y

T

2 sin4 π y
T

.

(6.5)
Now, φ(y) is T -periodic and regular for all y ∈ (0, T ) because f (x) ∈ C∞(0, T ).
φ(y) is regular also at y = 0 (and at y = T by T -periodicity) since

φ(0) = lim
y→0

φ(y) = 1

24

(

T

π

)4

u(4)(t) + 1

6

(

T

π

)2

u′′(t), (6.6)

which can be obtained by simply expanding the numerator and denominator of φ(y)

in a Taylor series about y = 0. Therefore, as a function of the complex variable z,
φ(z) is analytic and T -periodic in Dσ . Consequently, =∫ T

0 φ(y) dy is actually a regular
integral.

Applying the trapezoidal rule to the regular integral ∫ T
0 φ(y) dy and invoking (6.6),

we first obtain

Tn[φ] = h
n−1
∑

j=0

φ( jh) = h
n−1
∑

j=1

φ( jh)+1

6

(

T

π

)2

u′′(t)h+ 1

24

(

T

π

)4

u(4)(t)h, h = T

n
.

(6.7)
Next, by (6.5),

n−1
∑

j=1

φ( jh) =
n−1
∑

j=1

u(t + jh) + u(t − jh)

2 sin4 jπ
n

− u(t)
n−1
∑

j=1

1

sin4 jπ
n

− 1

2

(

T

π

)2
u′′(t)

n−1
∑

j=1

1

sin2 jπ
n

.

Now, by (6.1) and (2.3),

n−1
∑

j=1

u(t + jh) + u(t − jh)

2 sin4 jπ
n

=
n−1
∑

j=1

1

2
[ f (t + jh) + f (t − jh)] =

n−1
∑

j=1

f (t + jh).
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Substituting this into (6.7), and invoking also (2.5), we obtain

Tn[φ] = h
n−1
∑

j=1

f (t + jh) −
(

n4 + 10n − 11

45

)

u(t)h

−
(

n2 − 2

6

)(

T

π

)2

u′′(t)h + 1

24

(

T

π

)4

u(4)(t)h. (6.8)

Comparing (6.8) with (6.4), we realize that Tn[φ] = ̂T (0)
4,n [ f ].

Appendix

In this appendix, we describe some tools we believe should be helpful in extending
the treatment we have presented for m = 1, 2, 3, 4 to arbitrary m.

1. Determination of�(y)

Our first tool concerns the T -periodic Taylor-like sum to be subtracted from the expres-
sions [u(t + y) ± u(t − y)] in order to obtain a T -periodic and analytic φ(y).

• When dealing with

u(t + y) + u(t − y)

2 sin2r π y
T

,

subtract (A0+∑r−1
k=1 Ak sin2k π y

T ), which is T -periodic, from [u(t +y)+u(t −y)],
with A0, A1, . . . , Ar−1 such that

φ(y) = 1

2 sin2r π y
T

[

u(t + y) + u(t − y) −
(

A0 +
r−1
∑

k=1

Ak sin
2k π y

T

)]

is well-defined at y = 0 (hence at y = T as well). This means that the expression
inside the square brackets must be O(y2r ) as y → 0. The Ak can be determined
one by one in the order A0, A1, . . . . For example, A0 = 2u(t), A1 = ( T

π
)2u′′(t),

and so on.
• When dealing with

cos π y
T

2 sin2r+1 π y
T

[u(t + y) − u(t − y)] dy,
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subtract [tan π y
T (B0 +∑r−1

k=1 Bk sin2k π y
T )], which is T -periodic, from [u(t + y)−

u(t − y)], with B0, B1, . . . , Br−1 such that

φ(y) = cos π y
T

2 sin2r+1 π y
T

[

u(t + y) − u(t − y) − tan
π y

T

(

B0 +
r−1
∑

k=1

Bk sin
2k π y

T

)]

is well-defined at y = 0 (hence at y = T as well). This means that the expres-
sion inside the square brackets must be O(y2r+1) as y → 0. The Bk can be
determined one by one in the order B0, B1, . . . . For example, B0 = 2( T

π
)u′(t),

B1 = 1
3 (

T
π
)3u′′′(t) − 2

3 (
T
π
)u′(t), and so on.

In both cases, invoke also (2.4). The end result is I [ f ] = ∫ T
0 φ(x) dx .

2. Determination of
∑n−1

j=1 1/(sin j�
n )

2r , r = 1, 2, . . .

In the treatment of ̂T (0)
m,n[ f ] with m = 2, 3, 4, we made repeated use of (2.5). We

can actually deal with arbitrary m in exactly the same way we dealt with the cases
m = 2, 3, 4 provided we know

∑n−1
j=1 1/(sin

jπ
n )2r analytically as a function of n. We

turn precisely to this problem here. This is our second tool.
Let us consider the integral ∫ 10 wp(x) dx , where wp(x) = 1/(sin πx)p, p being

complex and arbitrary. We begin by noting that, as a regular integral,

∫
1

0

1

(sin πx)p
dx = 1√

π

	( 12 − 1
2 p)

	(1 − 1
2 p)

, Re p < 1. (A.1)

We next note that the right-hand side of (A.1) is analytic in p, except when p =
1, 3, 5, . . . , where it has simple poles. Thus, in case of divergence, that is, when
Re p ≥ 1, the right-hand side of (A.1) is the HFP of ∫ 10 wp(x) dx , provided p �=
1, 3, 5, . . . . That is,

=∫
1

0

1

(sin πx)p
dx = 1√

π

	( 12 − 1
2 p)

	(1 − 1
2 p)

, ∀ p ∈ C\{1, 3, 5, . . .}. (A.2)

Therefore, letting p = 2r , r = 1, 2, . . . , in (A.2) and recalling the fact that
1/	(−k) = 0, k = 0, 1, 2, . . . , we obtain

=∫
1

0

1

(sin πx)2r
dx = 0, r = 1, 2, 3, . . . . (A.3)

In addition, w2r (x) is infinitely differentiable on (0, 1), and has the (convergent)
asymptotic expansions

w2r (x) =
∞
∑

s=0

βs(r)x2s−2r , |x | < 1, (as x → 0),
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and

w2r (x) =
∞
∑

s=0

βs(r)(1 − x)2s−2r , |1 − x | < 1, (as x → 1),

where βs(r) are defined in terms of the generalized Bernoulli polynomials B(σ )
s (u) as

in

βs(r) = (−1)s22sπ2s−2r B(2r)
2s (r)

(2s)! , s = 0, 1, . . . .

Invoking Corollary 2.2 in [7] or Theorem 2.3 in [8], and recalling (A.3), we obtain

n−1
∑

j=1

1

(sin jπ
n )2r

=
r

∑

s=0

(−1)s22s+1π2s−2r B(2r)
2s (r)

(2s)! ζ(2r − 2s)n2r−2s, (A.4)

first noted by Brauchart, Hardin, and Saff [2]. (See also the example in [8, Section 4].)
Invoking also

ζ(2k) = (−1)k−122k−1π2k B2k

(2k)! , k = 0, 1, 2, . . . ,

where Bi are Bernoulli numbers, (A.4) simplifies to read

n−1
∑

j=1

1

(sin jπ
n )2r

= (−1)r−14r
r

∑

s=0

B2r−2s

(2r − 2s)!
B(2r)
2s (r)

(2s)! n2r−2s

= (−1)r−1 4r

(2r)!
r

∑

s=0

(

2r

2s

)

B2r−2s B(2r)
2s (r)n2r−2s . (A.5)

Note that the end result is a polynomial in n2 of degree r . In addition, the coefficients of
this polynomial are rational numbers since both B2s and B(2r)

2s (r) are rational numbers.

3. A brief introduction to generalized Bernoulli numbers and polynomials

The generalized Bernoulli numbers B(σ )
s and generalized Bernoulli polynomials

B(σ )
s (u) are defined via (see Luke [5, p. 18–23] or Andrews, Askey, and Roy [1,

p. 615], for example)

(

t

et − 1

)σ

=
∞
∑

s=0

B(σ )
s

t s

s! and

(

t

et − 1

)σ

eut =
∞
∑

s=0

B(σ )
s (u)

t s

s! , |t | < 2π.
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B(σ )
s (u) is of degree s in u and is given as B(σ )

s (u) = ∑s
k=0

(s
k

)

B(σ )
s−kuk and B(σ )

s (0) =
B(σ )

s . Note that, for all σ , B(σ )
0 = 1 and B(σ )

0 (u) ≡ 1.

B(σ )
s is a polynomial in σ of degree s, and is also known as a Nörlund polynomial.

Note also that B(σ )
s are rational numbers when σ is a rational number.

In addition, B(σ )
s (σ − u) = (−1)s B(σ )

s (u); therefore, for s = 0, 1, 2, . . . ,
B(σ )
2s+1(σ/2) = 0 while B(σ )

2s (σ/2) is a polynomial in σ of degree s. In addition,

when σ is a rational number B(σ )
2s (σ/2) is a rational number too.

For completeness, we give a few of the B(2r)
2s (r) needed in (A.5). For a longer list,

see [5, p. 34]:

B(2r)
0 (r) = 1, B(2r)

2 (r) = − r

6
, B(2r)

4 (r) = r(5r + 1)

60
,

B(2r)
6 (r) = − r

504
(35r2 + 21r + 4), B(2r)

8 (r) = r

2160
(175r3 + 210r2 + 101r + 18).

By letting r = 1, 2 in (A.5), we obtain the summation rules in (2.5). To end, we
use (A.5) to compute

∑n−1
j=1 1/(sin

jπ
n )2r for r = 3, 4:

n−1
∑

j=1

1

(sin jπ
n )6

= 1

945
(2n6 + 21n4 + 168n2 − 191),

n−1
∑

j=1

1

(sin jπ
n )8

= 1

14175
(3n8 + 40n6 + 294n4 + 2160n2 − 2497).
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