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We consider the numerical computation of Hadamard Finite Part (HFP) integrals

Km(t; u) = =
Tˆ

0

Sm

(
π(x − t)

T

)
u(x)dx, 0 < t < T , m ∈ {1,2, . . .},

where u(x) is T -periodic and sufficiently differentiable and

S2r−1(y) = cos y

sin2r−1 y
, S2r(y) = 1

sin2r y
, r = 1,2,3, . . . .

For each m, we regularize the HFP integral Km(t; u) and show that

Km(t; u) = K0(t; Um) ≡
Tˆ

0

(
log

∣∣∣∣ sin
π(x − t)

T

∣∣∣∣) Um(x)dx,

Um(x) being some linear combination of the first m derivatives of u(x). We then propose 
to approximate Km(t; u) by the quadrature formula Q m,n(t; u) ≡ Km(t; φn), where φn(x) is 
the nth-order balanced trigonometric polynomial that interpolates u(x) on [0, T ] at the 
2n equidistant points xn,k = kT

2n , k = 0, 1, . . . , 2n − 1. The implementation of Q m,n(t; u)

is simple, the only input needed for this being the 2n function values u(xn,k), k =
0, 1, . . . , 2n − 1. Using Fourier analysis techniques, we develop a complete convergence 
theory for Q m,n(t; u) as n → ∞ and prove that it enjoys spectral convergence when 
u ∈ C∞(R). We illustrate the effectiveness of Q m,n(t; u) with numerical examples for 
m = 0, 1, . . . , 5.
We also show that the HFP integral =́T

0 f (x, t) dx of any T -periodic integrand f (x, t) that 
has mth order poles at x = t +kT , k = 0, ±1, ±2, . . . , but is sufficiently differentiable in x on 
R \ {t ±kT }∞k=0, can be expressed in terms of the Ks(t; u(·, t)), where u(x, t) is a T -periodic 
and sufficiently differentiable function in x on R that can be computed from f (x, t). 
Therefore, =́T

0 f (x, t) dx can be computed efficiently using our new numerical quadrature 
formulas Q s,n(t; u(·, t)) on the individual Ks(t; u(·, t)). Again, only 2n function evaluations, 
namely, u(xn,k, t), k = 0, 1, . . . , 2n − 1, are needed for the whole process.
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1. Introduction

For an arbitrary function u(x) that is sufficiently differentiable and T -periodic on R, let us define the quantities Km(t; u), 
m = 1, 2, . . . , via Hadamard Finite Part (HFP) integrals as follows:

Km(t; u) = =
Tˆ

0

cos π(x−t)
T

sinm π(x−t)
T

u(x)dx, 0 < t < T , if m = 1,3,5, . . . , (1.1a)

Km(t; u) = =
Tˆ

0

1

sinm π(x−t)
T

u(x)dx, 0 < t < T , if m = 2,4,6, . . . . (1.1b)

Clearly, the integrals involved are not defined in the regular sense since their integrands have polar singularities of the form 
(x − t)−m on (0, T ), which are not integrable. They are defined in the sense of Hadamard Finite Part (HFP), however.

Let us also define the quantity K0(t; u) as the regular integral

K0(t; u) =
Tˆ

0

(
log

∣∣∣∣ sin
π(x − t)

T

∣∣∣∣) u(x)dx, 0 < t < T , (1.2)

again with u(x) sufficiently differentiable and T -periodic on R. Observe that the function (log | sin π(x−t)
T |) is absolutely 

integrable on [0, T ].
Note that the kernel functions in (1.1a), (1.1b), (1.2), namely,

cos π(x−t)
T

sinm π(x−t)
T

, m = 1,3,5, . . . ; 1

sinm π(x−t)
T

, m = 2,4,6, . . . ; log
∣∣ sin π(x−t)

T

∣∣,
are all T -periodic.

In this work, we study the analytical properties of Km(t; u) for all m ≥ 0 and derive simple and efficient numerical quadra-
ture formulas for them. After presenting some technical preliminaries in Section 2, which are crucial for later developments, 
we approach the analysis and the approximation of the Km(t; u) in Sections 3–5 in two major steps:

• First, we regularize the HFP integrals in (1.1a)–(1.1b) and show that, for every m ≥ 1, Km(t; u) can be expressed as a 
regular integral as

Km(t; u) = K0(t; Um) =
Tˆ

0

(
log

∣∣∣∣ sin
π(x − t)

T

∣∣∣∣) Um(x)dx, 0 < t < T . (1.3)

We show that Um(x) is a linear combination of the first m derivatives of u(x) and is also T -periodic. We provide Um(x)
explicitly.

• Next, we interpolate u(x) at 2n equidistant points in [0, T ] by a balanced trigonometric polynomial φn(x) and take 
Km(t; φn) as our approximation to Km(t; u). Thus, the cost of computing Km(t; φn) is only 2n evaluations of u(x), 
no derivative information being needed. For u ∈ C P (R), P > m, we show by using Fourier analysis techniques that 
limn→∞ Km(t; φn) = Km(t; u). We also provide the rate of convergence and prove that the accuracy of Km(t; φn) as an 
approximation to Km(t; u) increases as P increases. This accuracy is spectral when P = ∞ thus when u ∈ C∞(R).

In Section 6, we apply our numerical quadrature formulas to the integrals Km(t; u), m = 0, 1, . . . , 5, with u(z) analytic 
in an infinite strip containing the real axis; these examples confirm some of our convergence theory pertaining to our 
numerical quadrature formulas, hence illustrate the strength of our approach. In Section 7, we deal with arbitrary HFP 
integrals =́T

0 f (x, t) dx, where f (x, t) = g(x, t)/(x − t)m with 0 < t < T , and is T -periodic and sufficiently differentiable on 
R \ {t ± kT }∞k=0. We show that these integrals can be expressed in terms of the Ks(t; ·), hence they can be computed 
easily with our new numerical quadrature formulas. We also show how these quadrature formulas can be applied to some 
singular Fredholm integral equations that arise from boundary integral equations. In Section 8, we treat similarly the regular 
integrals 

´ T
0 f (x, t) dx, where f (x, t) is T -periodic on R and has logarithmic singularities at t ± kT , k = 0, 1, 2, . . . . Finally, 

we include an appendix that gives a short description of trigonometric interpolation and treats the convergence theory for 
the interpolants and their derivatives as well. This appendix forms an integral part of this work as its contents are used in 
the development of our numerical quadrature formulas and their convergence analysis.

Note that HFP integrals involving Ks(t; ·) arise in a natural way, for example, when dealing with Cauchy transforms of 
all orders on the unit circle; see [24]. Let us denote by Jm(z; w) the Cauchy transform of order m of the function w(ζ ) on 
the unit circle, namely,
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Jm(z; w) = =
ˆ

�

w(ζ )

(ζ − z)m
dζ, z ∈ � = {ζ : |ζ | = 1}, m = 1,2, . . . ,

� being positively oriented. Making the substitution ζ = eix , 0 ≤ x ≤ 2π , so that T = 2π , and noting that z = eit for some 
unique t ∈ [0, 2π), and denoting ŵ(x) = w(eix), Jm(z; w) can be expressed as

Jm(z; w) = iei(1−m)t

(2i)m
=
2πˆ

0

exp
[
i(2 − m) x−t

2

]
sinm x−t

2

ŵ(x)dx.

We then have

J1(z; w) = 1

2

[
K1(t; ŵ) + i

2πˆ

0

ŵ(x)dx

]
,

J2(z; w) = − ie−it

4
K2(t; ŵ), J3(z; w) = −e−i2t

8

[
K3(t; ŵ) − iK2(t; ŵ)

]
,

J4(z; w) = ie−i3t

16

[
K4(t; ŵ) − 2iK3(t; ŵ) − 2K2(t; ŵ)

]
.

For all m ≥ 2, we have

Jm(z; w) = iei(1−m)t

(2i)m

m∑
s=2

σm,s Ks(t; ŵ), σm,s constants independent of t.

For HFP integrals, we refer the reader to the books by Davis and Rabinowitz [4], Evans [5], Krommer and Ueberhuber 
[15], and Kythe and Schäferkotter [17]. See also the paper [20] by Monegato for a review. For trigonometric interpolation 
as summarized in the appendix, see the books by Atkinson [2], Henrici [10], and Zygmund [30], for example. The cases 
of m = 0, 1, 2 appear in the boundary integral formulation of two-dimensional boundary value problems and have been 
treated by different authors; see Atkinson [1], [3], Kress [13], Kress and Sloan [14], and Kussmaul [16], McLean [18], McLean, 
Prössdorf, and Wendland [19], Saranen and Sloan [21], Sloan and Burn [28], and Yan and Sloan [29], for example.

Before we go on, we would like to point out to some recent numerical quadrature formulas we developed for computing 
the HFP integrals

=
Tˆ

0

f (x)dx, f (x) = g(x)

(x − t)m
, m ∈ {1,2, . . .}, 0 < t < T ,

f ∈ C P (R \ {t ± kT }∞k=0) and f (x) T -periodic, (1.4)

where P > m can be a finite integer or it can be infinite. These formulas are based on the trapezoidal sums

h
n−1∑
j=1

f (t + jh), h = T

n
, n = 1,2, . . . ,

with compact, yet sophisticated, correction terms involving some or all of g(i)(t), i = 0, 1, . . . , m. They are obtained via the 
application of a recent generalization of the Euler–Maclaurin expansion by the author [22]. They enjoy spectral accuracy 
when P = ∞, just like the methods of the present work. For details about these formulas and numerical examples, see Sidi 
[23], [24], [25], [27]. For the efficient treatment of nonperiodic f (x), see Sidi [26].

2. Technical preliminaries

We start with some technical tools that we will be using throughout this work, starting already in the next section.

1. First, let us recall that if a function w(x) has a nonintegrable singularity at x = t for t ∈ (a, b) but is integrable on any 
subinterval of [a, b] that does not contain x = t , then =́b

a w(x) dx, the HFP of 
´ b

a w(x) dx, is obtained by expanding

�(ε) =
t−εˆ

a

w(x)dx +
bˆ

t+ε

w(x)dx, ε > 0,

asymptotically as ε → 0+, discarding those terms that go to infinity, and retaining the limit as ε → 0+ of the remaining 
terms. (See Monegato [20], for example.)
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2. Next, let us define the functions Sm(y) as follows:

S0(y) = log | sin y|; Sm(y) =

⎧⎪⎨⎪⎩
cos y

sinm y
if m = 1,3,5, . . . ,

1

sinm y
if m = 2,4,6, . . . .

(2.1)

Let us now define the functions Rm(y), m = 1, 2, . . . , for y ∈ (0, π), via the regular integrals

Rm(y) =
yˆ

π/2

Sm(z)dz + Rm(π/2), (2.2a)

R1(π/2) = 0; R2r(π/2) = 0, R2r+1(π/2) = − 1

2r
, r = 1,2, . . . . (2.2b)

Then,

R1(y) = S0(y); R2r+1(y) = − 1

2r
S2r(y), r = 1,2, . . . , (2.3)

and, by Gradshteyn and Ryzhik [8, §2.515(1)],

R2r(y) = −
r∑

k=1

αr,k S2k−1(y), r = 1,2, . . . , (2.4)

αr,k =

⎧⎪⎨⎪⎩
1

2r − 1

(2k)(2k + 2) · · · (2r − 2)

(2k − 1)(2k + 1) · · · (2r − 3)
, k = 1,2, . . . , r − 1,

1

2r − 1
, k = r.

(2.5)

Thus

m = 2 → r = 1 : α1,1 = 1

m = 4 → r = 2 : α2,1 = 2/3 α2,2 = 1/3

m = 6 → r = 3 : α3,1 = 8/15 α3,2 = 4/15 α3,3 = 1/5

for example. Note that 
∑r

k=1 αr,k = 1, which can be proved by induction on r. Clearly, R2r(y) is a linear combination of 
S1(y), S3(y), . . . , S2r−1(y), while R2r+1(y) is a constant multiple of S2r(y).
For the special cases m = 2, 3, 4, 5, we thus have

R2(y) = −S1(y), R3(y) = −1

2
S2(y),

R4(y) = −2

3
S1(y) − 1

3
S3(y), R5(y) = −1

4
S4(y).

3. Note that, by (2.1), Sm(y) is an even (odd) function of y if m is even (odd), and π -periodic as well. In addition, for 
m ≥ 1,

Sm(y) = y−m Ŝm(y), Ŝm(y) even, Ŝm(0) = 1. (2.6)

Consequently, by (2.3)–(2.4), Rm(y) is an even (odd) function of y if m is odd (even), and π -periodic as well. In addition, 
for m ≥ 2,

Rm(y) = y−m+1 R̂m(y), R̂m(y) even, R̂m(0) = − 1

m − 1
. (2.7)

4. Finally, we derive a 3-term recursion relation pertaining to the Rm(y) and the Sm(y). We begin with (2.2a)–(2.2b) by 
applying integration by parts to

R2r+2(y) =
yˆ

π/2

1

sin2r z
· 1

sin2 z
dz =

yˆ

π/2

(
1

sin2r z

)
· d

dz

(
− cos z

sin z

)
dz.

We obtain
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R2r+2(y) = − cos y

sin2r+1 y
− 2r

yˆ

π/2

cos2 z

sin2r+2 z
dz,

which, upon invoking cos2 z = 1 − sin2 z and (2.1) and (2.2a)–(2.2b), becomes

R2r+2(y) = −S2r+1(y) − 2r[R2r+2(y) − R2r(y)],
hence

(2r + 1)R2r+2(y) = 2rR2r(y) − S2r+1(y). (2.8)

Note that (2.3), (2.4), and (2.8) will be very useful later in proving Theorems 3.1 and 4.1.

3. Regularization of Km(t; u)

Let us observe that, by (1.1a)–(1.1b) and (1.2) and (2.1),

Km(t; u) = =
Tˆ

0

Sm

(
π(x − t)

T

)
u(x)dx. (3.1)

Theorems 3.1, 3.2, and 3.3 that follow deal with the issue of regularizing the HFP integrals Km(t; u) and turn out to be 
the key to the developments in the next two sections.

Theorem 3.1. Provided u ∈ Cm(R) and is T -periodic, and m ≥ 1, there holds

Km(t; u) = − T

π
=

Tˆ

0

Rm

(
π(x − t)

T

)
u′(x)dx. (3.2)

Consequently, by (2.1)–(2.5), we have

K1(t; u) = − T

π
K0(t; u′), (3.3)

K2r+1(t; u) = T

π

1

2r
K2r(t; u′), r = 1,2, . . . , (3.4)

K2r(t; u) = T

π

r∑
k=1

αr,k K2k−1(t; u′), r = 1,2, . . . , (3.5)

where αr,k are as in (2.4)–(2.5).

Proof. Let us make the change of variable y = π(x − t)/T in the integral representation of Km(t; u) in (3.1). We obtain

Km(t; u) = T

π
=

π−πt/Tˆ

−πt/T

Sm(y)w(y)dy, w(y) ≡ u

(
t + T

π
y

)

= T

π
=
π/2ˆ

−π/2

Sm(y)w(y)dy, (3.6)

since the integrand Sm(y)w(y) is π -periodic because both Sm(y) and w(y) are π -periodic.1

1 The HFP integral =́T
0 g(x)/(x − t)m dx, 0 < t < T , is invariant under a linear variable transformation such as y = π(x − t)/T . This has been known for 

a long time; see Krommer and Ueberhuber [15, Theorem 1.4.3], for example. In Sidi [26, Theorem 3.1] it is shown that =́T
0 g(x)/(x − t)m dx, 0 < t < T , is 

invariant under arbitrary legitimate variable transformations.
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Noting that Sm(y) = R ′
m(y) from (2.2a), let us now apply integration by parts to =́π/2

−π/2 Sm(y)w(y) dy. We obtain

Km(t; u) = T

π
=
π/2ˆ

−π/2

(
d

dy
[Rm(y)w(y)] − Rm(y)w ′(y)

)
dy

= T

π
=
π/2ˆ

−π/2

d

dy
[Rm(y)w(y)]dy − T

π
=
π/2ˆ

−π/2

Rm(y)w ′(y)dy. (3.7)

Next, let us show that

=
π/2ˆ

−π/2

d

dy
[Rm(y)w(y)]dy = 0. (3.8)

Since d
dy [Rm(y)w(y)] is singular only at y = 0 in the interval (−π/2, π/2), we have to analyze

�(ε) =
[ −εˆ

−π/2

+
π/2ˆ

ε

](
d

dy
[Rm(y)w(y)]

)
dy

= [
Rm(π/2)w(π/2) − Rm(−π/2)w(−π/2)

] + [
Rm(−ε)w(−ε) − Rm(ε)w(ε)

]
as ε → 0+. The first brackets vanish because Rm(y)w(y) is π -periodic. Therefore,

�(ε) = Rm(−ε)w(−ε) − Rm(ε)w(ε).

We now invoke (2.1)–(2.7). In particular, we invoke the fact that Rm(y) is an even (odd) function when m is an odd (even) 
integer.

When m = 1, by the fact that R1(y) = S0(y) = (log | sin y|), we have

�(ε) = (log | sinε|)ŵ(ε), ŵ(ε) = w(−ε) − w(ε).

Since ŵ(ε) is differentiable in a neighborhood of ε = 0, we also have that ŵ(ε) = ŵ ′ (̂ε)ε for some ε̂ ∈ (0, ε). Therefore, 
limε→0+ �(ε) = 0 since ŵ ′(0) is well defined. Therefore, (3.8) holds in this case.

When m ≥ 2, we have the following two cases:

• When m is an even integer, say m = 2r, Rm(ε) is an odd function of ε , which implies that Rm(−ε) = −Rm(ε), hence

�(ε) = Rm(ε)ŵ(ε), ŵ(ε) = −w(ε) − w(−ε).

We now express Rm(ε) in the form Rm(ε) = ε−2r+1 R̂m(ε), with R̂m(ε) being an even function of ε and infinitely 
differentiable in a neighborhood of ε = 0. Next, we note that ŵ(ε) is an even function of ε and m times differentiable 
in a neighborhood of ε = 0. Therefore,

�(ε) = ε−2r+1θ(ε), θ(ε) = R̂m(ε)ŵ(ε),

θ(ε) being even and m = 2r times differentiable in a neighborhood of ε = 0. Replacing θ(ε) by its Maclaurin series 
expansion with remainder, we obtain

�(ε) = ε−2r+1
[ r−1∑

i=0

θ(2i)(0)

(2i)! ε2i + θ(2r)(̂ε)

(2r)! ε2r
]
, for some ε̂ ∈ (0, ε).

As ε → 0+, the summation 
∑r−1

i=0 contributes to �(ε) only the (negative) powers ε−p , p = 1, 3, . . . , 2r − 1, which we 
discard. The remaining term, namely, θ(2r) (̂ε)

(2r)! ε , tends to zero as ε → 0+ since limε→0+ θ(2r)(̂ε) = θ(2r)(0), which is well 
defined. We have proved the validity of (3.8) when m is even.

• When m is an odd integer, say m = 2r + 1, Rm(ε) is an even function of ε , which implies that Rm(−ε) = Rm(ε), hence

�(ε) = Rm(ε)ŵ(ε), ŵ(ε) = −w(ε) + w(−ε).

We now express Rm(ε) in the form Rm(ε) = ε−2r R̂m(ε), with R̂m(ε) being an even function of ε and infinitely differ-
entiable in a neighborhood of ε = 0. Next, we note that ŵ(ε) is an odd function of ε and m times differentiable in a 
neighborhood of ε = 0. Therefore,
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�(ε) = ε−2rθ(ε), θ(ε) = R̂m(ε)ŵ(ε),

θ(ε) being odd and m = 2r + 1 times differentiable in a neighborhood of ε = 0. Replacing θ(ε) by its Maclaurin series 
expansion with remainder, we obtain

�(ε) = ε−2r
[ r−1∑

i=0

θ(2i+1)(0)

(2i + 1)! ε2i+1 + θ(2r+1)(̂ε)

(2r + 1)! ε2r+1
]

for some ε̂ ∈ (0, ε).

As ε → 0+, the summation 
∑r−1

i=0 contributes to �(ε) only the (negative) powers ε−p , p = 1, 3, . . . , 2r − 1, which we 
discard. The remaining term, namely, θ(2r+1) (̂ε)

(2r+1)! ε , tends to zero as ε → 0+ since limε→0+ θ(2r+1)(̂ε) = θ(2r+1)(0), which 
is well defined. We have proved the validity of (3.8) when m is odd.

We have thus proved the validity of (3.8) for all m. With this, (3.7) becomes

Km(t; u) = − T

π
=
π/2ˆ

−π/2

Rm(y)w ′(y)dy,

which, upon going back to the variable x and invoking the T -periodicity of Rm(
π(x−t)

T )u′(x), gives (3.2). This completes the 
proof. �

Using Theorem 3.1, we now tackle the task of regularizing the HFP integrals described in (1.1a)–(1.1b). The point here 
is that the two HFP integral representations of Km(t; u) given in (3.1) and (3.2) differ essentially in the strength of their 
respective (polar) singularities at x = t; the former has a pole of order m, while the latter has a pole of order m − 1. This 
can also be seen in (3.3)–(3.5). Our ultimate aim is to reach the (regular) integral representation

Km(t; u) =
Tˆ

0

(
log

∣∣∣∣ sin
π(x − t)

T

∣∣∣∣) Um(x)dx = K0(t; Um), 0 < t < T ,

Um ∈ C∞(R) and T -periodic (3.9)

described in (1.3). This can be achieved by repeated application of (3.3)–(3.5), starting with Km(t; u) in (3.1), the end result 
being that Um(x) is a linear combination of derivatives of u(x). We will do this by introducing the notation

μ = T

2π
(3.10)

for simplicity. We have already seen in (3.3) the following example with m = 1:

K1(t; u) = − T

π

Tˆ

0

S0

(
π(x − t)

T

)
u′(x)dx

= −2μK0(t; u′) ⇒ U1 = −2μu′. (3.11)

Here are additional examples with m ≥ 2:

K2(t; u) = 2μK1(t; u′)
= −4μ2 K0(t; u′′) ⇒ U2 = −4μ2u′′ (3.12)

K3(t; u) = μK2(t; u′)
= −4μ3 K0(t; u′′′) ⇒ U3 = −4μ3u′′′ (3.13)

K4(t; u) = 2μ

[
2

3
K1(t; u′) + 1

3
K3(t; u′)

]
= 2μ

[
− 4μ

3
K0(t; u′′) − 4μ3

3
K0(t; u(4))

]
⇒ U4 = −8

3
μ2u′′ − 8

3
μ4u(4) (3.14)
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K5(t; u) = μ

2
K4(t; u′)

= μ2
[

− 4μ

3
K0(t; u′′′) − 4μ3

3
K0(t; u(5))

]
⇒ U5 = −4

3
μ3u′′′ − 4

3
μ5u(5) (3.15)

K6(t; u) = 2μ

[
8

15
K1(t; u′) + 4

15
K3(t; u′) + 1

5
K5(t; u′)

]
= 2μ

[
− 16μ

15
K0(t; u′′) − 4μ3

3
K0(t; u(4)) − 4μ5

15
K0(t; u(6))

]
⇒ U6 = −32

15
μ2u′′ − 8

3
μ4u(4) − 8

15
μ6u(6) (3.16)

We summarize the cases of m ≥ 2 in the next theorem that can be proved by induction on m. [Note that, for m = 1, we 
already have U1(x) = −2μu′(x) by (3.11).]

Theorem 3.2. For m ≥ 2, provided u ∈ Cm(R) and is T -periodic, Um(x) in (3.9) is some linear combination of u(s)(x), s = 2, . . . , m. 
Actually, we have

Um(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r∑
k=1

βr,kμ
2ku(2k)(x) if m = 2r, r = 1,2, . . . ,

r∑
k=1

βr,k

r
μ2k+1u(2k+1)(x) if m = 2r + 1, r = 1,2, . . . ,

(3.17)

the βr,k being fixed (negative) numbers that can be determined by repeated application of Theorem 3.1 to Km(t; u) in (3.1).2

We end this section with the following theorem.

Theorem 3.3. Provided u ∈ C2r+2(R) and is T -periodic, the following recursion relation is true:

(2r + 1)K2r+2(t; u) = 2rK2r(t; u) + T

π
K2r+1(t; u′)

= 2rK2r(t; u) + 2μ2

r
K2r(t; u′′). (3.18)

Proof. By (2.8), we first have

(2r + 1) =
Tˆ

0

R2r+2

(
π(x − t)

T

)
u′(x)dx =2r =

Tˆ

0

R2r

(
π(x − t)

T

)
u′(x)dx

− =
Tˆ

0

S2r+1

(
π(x − t)

T

)
u′(x)dx.

By invoking (3.1), (3.2), and (3.4), we obtain (3.18). �

4. Construction of Km(t; u) via Fourier series

4.1. Preliminaries

Going back to (1.1a), (1.1b), and (1.2), we realize that, provided u(x) is sufficiently differentiable on R, Km(t; u) are 
T -periodic functions of t . This prompts us to study their Fourier series 

∑∞
q=−∞ hm,qeq(t) in the interval [0, T ], where

eq(x) ≡ exp(i2qπx/T ), q = 0,±1,±2, . . . . (4.1)

2 Explicit expressions for the βr,k are given in (4.12)–(4.13) in Theorem 4.2.
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As will become clear shortly, working with the functions exp(i2qπx/T ) is much more convenient than working with 
sin(2qπx/T ) and cos(2qπx/T ).

We begin with the following important observation concerning Km(t; eq):

Theorem 4.1. For all m ≥ 0 and all q, there exist constants Lm,q independent of t, such that

Km(t; eq) = Lm,qeq(t), Lm,q = T

π
=
π/2ˆ

−π/2

Sm(y) ei2qy dy. (4.2)

For m = 0, 1, 2, 3, we have

L0,q =
⎧⎨⎩−T log 2 if q = 0,

− T

2|q| if q 
= 0,
L1,q = iT sgn(q), L2,q = −2T |q|, L3,q = −i2T sgn(q)q2, (4.3)

where sgn(q) is defined as

sgn(q) =

⎧⎪⎨⎪⎩
+1 if q > 0

0 if q = 0

−1 if q < 0

.

For all m = 2, 3, . . . , the Lm,q satisfy

L2r+1,q = i
q

r
L2r,q, r = 1,2, . . . , (4.4)

and are given as

L2r,q = − T r

(r!) (1/2)r
|q|

r−1∏
j=1

( j2 − q2), (4.5)

L2r+1,q = −i
T

(r!) (1/2)r
sgn(q)q2

r−1∏
j=1

( j2 − q2), (4.6)

where (a)k is the Pochhammer symbol defined as

(a)0 = 1, (a)k =
k−1∏
j=0

(a + j), k = 1,2, . . . .

Proof. We start by observing that eq(x) = eq(x − t) · eq(t), hence

Km(t; eq) =
[

=
Tˆ

0

Sm

(
π(x − t)

T

)
eq(x − t)dx

]
eq(t).

We now make the change of variable of integration y = π(x − t)/T , and proceed as in (3.6). Invoking also the fact that 
eq(x − t) = ei2qy , and that Sm(y)ei2qy is π -periodic, we obtain

Km(t; eq) = T

π

[
=
π/2ˆ

−π/2

Sm(y)ei2qy dy

]
eq(t),

from which (4.2) follows.
We begin with the case m = 0, noting that

L0,q = T

π

π/2ˆ

−π/2

(
log | sin y|) ei2qy dy. (4.7)

By the fact that 
(

log | sin y|) sin 2qy is odd, we have
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π/2ˆ

−π/2

(
log | sin y|) sin 2qy dy = 0,

and, by the fact that 
(

log | sin y|) cos 2qy is even, we have (see [8, §4.384(7)])

π/2ˆ

−π/2

(
log | sin y|) cos 2qy dy = 2

π/2ˆ

0

(
log sin y

)
cos 2qy dy

=
⎧⎨⎩−π log 2 if q = 0,

− π

2|q| if q 
= 0.

Substituting these into (4.7), we obtain the result for L0,q given in (4.3).
To obtain the L1,q , L2,q , and L3,q we make use of (3.11)–(3.13) and the fact that

e(s)
q (x) = (i2qπ/T )seq(x) = (iq/μ)seq(x), s = 1,2, . . . , (4.8)

where we have also invoked (3.10).
To obtain Lm,q , m = 2, 4, 6, . . . , we recall Theorem 3.3. Letting u(x) = eq(x) in (3.18) and invoking (4.8), we first have

(2r + 1)K2r+2(t; eq) = 2rK2r(t; eq) − 2q2

r
K2r(t; eq),

which results in the 2-term recursion relation

K2r+2(t; eq) = r2 − q2

r(r + 1/2)
K2r(t; eq),

whose solution is

K2r(t; eq) = r

2(r!) (1/2)r

[ r−1∏
j=1

( j2 − q2)

]
K2(t; eq), r = 1,2, . . . .

We obtain (4.5) by invoking K2(t; eq) = L2,qeq(t) with L2,q as in (4.3).
As for Lm,q , m = 3, 5, 7, . . . , we invoke (3.4) and (4.8) and obtain (4.4), which, together with K2r(t; eq) = L2r,qeq(t), 

produces (4.6).
This completes the proof. �

Note. The following conclusions can be drawn from (4.3) and (4.5):

L0,0 
= 0; Lm,0 = 0 ∀m ≥ 1; Lm,−q =
{

Lm,q, m = 2,4,6, . . . ,

−Lm,q, m = 1,3,5, . . . ,
(4.9)

|L0,q| > |L0,q′ | ∀|q| < |q′|; |L1,q| = T ∀q 
= 0, (4.10)

if m ≥ 2:

{
Lm,q = 0 ∀ |q| ≤ �m/2
 − 1 and Lm,q 
= 0 ∀|q| ≥ �m/2
,
|Lm,q| > |Lm,q′ | ∀|q| > |q′| ≥ �m/2
. (4.11)

We shall make use of these in Section 5.
The next theorem concerns the scalars βr,k that we introduced in Theorem 3.2. It explores their connection with the 

Lm,q of the preceding theorem.

Theorem 4.2.

1. The constants βr,k in Theorem 3.2 are related to the L2r,q in (4.2) as follows:

L2r,q = L0,q

r∑
(−1)kβr,kq2k = − T

2|q|
r∑

(−1)kβr,kq2k, q 
= 0. (4.12)

k=1 k=1
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2. Define the (positive) scalars γr,k via

r−1∏
j=1

( j2 − q2) =
r∑

k=1

(−1)k−1γr,kq2k−2. (4.13)

Then the βr,k are given as

βr,k = − 2r

(r!) (1/2)r
γr,k, k = 1, . . . , r. (4.14)

Proof. Let u(x) = eq(x) in Theorem 3.2. Thus, K2r(t; eq) = K0(t; Eq,2r) with

Eq,2r(x) =
( r∑

k=1

(−1)kβr,kq2k
)

eq(x). (4.15)

Consequently,

K2r(t; eq) =
( r∑

k=1

(−1)kβr,kq2k
)

K0(t; eq). (4.16)

Invoking now Km(t; eq) = Lm,qeq(t) on both sides of this equality, we obtain (4.12).
Equating the expressions for L2r,q given in (4.12) and in (4.5), and noting that they are valid for all integer q 
= 0, we 

obtain (4.14). �

Note that the γr,k can be computed recursively as follows:

γr,1 =
r−1∏
j=1

j2, γr,r = 1, r = 2,3, . . . ,

γr+1,k = r2γr,k + γr,k−1, k = 2,3, . . . , r, r = 2,3, . . . .

4.2. Fourier series for K0(t; u(s)), s = 0, 1, . . .

Here and in the sequel, we assume that u(x) is T -periodic in the Hölder class C M+1,α(R), 0 < α ≤ 1.3 Then u(x) has the 
Fourier series representation

u(x) ∼
∞∑

q=−∞
cqei2qπx/T , cq = 1

T

Tˆ

0

u(x)e−i2qπx/T dx, (4.17)

which converges [to u(x)] absolutely and uniformly since

cq = O (|q|−M−α−1) as q → ±∞.

Similarly, u(s)(x), s ≥ 1, has the Fourier series representation4

u(s)(x) ∼
∞∑

q=−∞
c(s)

q ei2qπx/T , c(s)
q = 1

T

Tˆ

0

u(s)(x)e−i2qπx/T dx = (iq/μ)scq, (4.18)

which converges [to u(s)(x)] absolutely and uniformly for s ≤ M since

c(s)
q = O (|q|−M−α−1+s) as q → ±∞.

We now construct K0(t; u(s)) in terms of the Fourier series representation of u(s)(x), s = 0, 1, . . . , M .
We begin with u(0)(x) = u(x). By the fact that S0(

π(x−t)
T ) is absolutely integrable everywhere and because the Fourier 

series of u(x) converges to u(x) absolutely and uniformly everywhere, there holds

3 Thus u(s)(x), s = 0, 1, . . . , M , are all continuous and T -periodic in R, and u(M+1)(x) is in the Hölder class C0,α(0, T ), that is, |u(M+1)(x) − u(M+1)(y)| ≤
C |x − y|α for all x, y ∈ [0, T ] and for some constant C > 0. Needless to say, with M = ∞, this class contains all T -periodic functions in the class C∞(R).

4 Note that, because u(s)(0) = u(s)(T ), s = 0, 1, . . . , M , we have c(s)
0 = 0, s = 1, . . . , M .
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K0(t; u) = K0

(
t;

∞∑
q=−∞

cqeq

)
=

∞∑
q=−∞

cq K0(t; eq),

which, by (4.2) and (4.3), becomes

K0(t; u) =
∞∑

q=−∞
cq L0,qeq(t) = −T c0 log 2 − T

2

∞∑
q=−∞

q 
=0

cq

|q|ei2qπt/T . (4.19)

Recalling also that c(s)
0 = 0 and c(s)

q = (iq/μ)scq for q 
= 0, with s = 1, 2, . . . , we similarly have

K0(t; u(s)) =
∞∑

q=−∞
c(s)

q L0,qeq(t) = − T

2

∞∑
q=−∞

q 
=0

(iq/μ)s cq

|q|ei2qπt/T . (4.20)

Clearly, the right-hand side of (4.19) is the Fourier series of K0(t; u). Similarly, the right-hand side of (4.20) is the Fourier 
series of K0(t; u(s)) for s = 1, 2, . . . .

4.3. Fourier series for Km(t; u), m ≥ 1

Following the developments above, we now proceed to the construction of the Fourier series of Km(t; u). We assume 
that u(x) is as in the preceding subsection.

Theorem 4.3. For 1 ≤ m ≤ M, Km(t; u) has the following Fourier series representation that converges absolutely and uniformly:

Km(t; u) =
∞∑

q=−∞
cq Lm,qeq(t) =

∞∑
q=−∞

cq Lm,qei2qπt/T . (4.21)

Proof. We begin with the case m = 1. By (3.11) and (4.20), we have

K1(t; u) = −2μK0(t; u′) = iT
∞∑

q=−∞
q 
=0

sgn(q)cqeq(t).

Invoking now the fact that L1,q = iT sgn(q), we obtain (4.21) with m = 1.
As for the cases m ≥ 2, we begin with the regularized Km(t; u) as described in Theorem 3.2 and treat the cases of m = 2r

and m = 2r + 1 separately.
For m = 2r, by Theorem 3.2, we have

K2r(t; u) = K0(t; U2r), U2r(x) =
r∑

k=1

βr,kμ
2ku(2k)(x), (4.22)

with the βr,k as in Theorem 4.2. Therefore,

K2r(t; u) =
r∑

k=1

βr,kμ
2k K0(t; u(2k)), (4.23)

which, upon invoking (4.20), becomes

K2r(t; u) =
r∑

k=1

βr,kμ
2k

∞∑
q=−∞

cq(iq/μ)2k L0,qeq(t)

=
∞∑

q=−∞
cq

( r∑
k=1

(−1)kβr,kq2k
)

L0,qeq(t).

Invoking now (4.12), we obtain (4.21).
For m = 2r + 1, again by Theorem 3.2, we have

K2r+1(t; u) = K0(t; U2r+1), U2r+1(x) =
r∑ βr,k

r
μ2k+1u(2k+1)(x). (4.24)
k=1
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Therefore,

K2r+1(t; u) = 1

r

r∑
k=1

βr,kμ
2k+1 K0(t; u(2k+1)), (4.25)

which, upon invoking (4.20), becomes

K2r+1(t; u) = 1

r

r∑
k=1

βr,kμ
2k+1

∞∑
q=−∞

cq(iq/μ)2k+1L0,qeq(t)

=
∞∑

q=−∞
cq

(
i
q

r

r∑
k=1

(−1)kβr,kq2k
)

L0,qeq(t).

Invoking now (4.12) and (4.5), we obtain (4.21).
This completes the proof. �

Note. One might think that the result in (4.21) (with m ≥ 1) should follow immediately by simply writing

Km(t; u) = =
Tˆ

0

Sm

(
π(x − t)

T

)( ∞∑
q=−∞

cqeq(x)

)
dx

=
∞∑

q=−∞
cq =

Tˆ

0

Sm

(
π(x − t)

T

)
eq(x)dx

=
∞∑

q=−∞
cq Lm,qeq(t).

Despite the fact that the (infinite) series 
∑∞

q=−∞ cqeq(x) converges to u(x) absolutely and uniformly on R, the equality on 
the second line cannot be justified. The reason for this is that, when m ≥ 1, the integral on the first line does not exist in 
the regular sense as its integrand has a nonintegrable singularity at x = t in (0, T ).

5. Numerical quadrature formula for Km(t; u) via trigonometric interpolation

5.1. The numerical quadrature formula Q m,n(t; u)

So far, we have seen that the T -periodic (divergent) HFP integrals in (1.1a)–(1.1b) can be expressed in terms of the 
HFP integrals Km(t; u), which can be expressed as the regular integrals K0(t; Um) = ´ T

0 S0
(π(x−t)

T

)
Um(x) dx, Um(x) being a 

linear combination of derivatives of u(x) as in (3.11)–(3.16) for m = 1, . . . , 6 and as in (3.17) for arbitrary m ≥ 2. We now 
present a quadrature method that approximates K0(t; Um) without having to approximate the individual K0(t; u(s)) that 
form K0(t; Um).

We proceed as follows:

• We first approximate u(x) on [0, T ] by a balanced trigonometric polynomial φn(x) of degree n that interpolates u(x) at 
2n equidistant points xn,0, xn,1, . . . , xn,2n−1. As summarized in the appendix to this work, φn(x) is of the form

φn(x) =
n∑

q=−n

′′c̃n,qeq(x), c̃n,n = c̃n,−n, (5.1)

the double prime on the summation 
∑′′ n

q=−n meaning that the terms with q = ±n are to be multiplied by 1/2, and

φn(xn,k) = u(xn,k), xn,k = kT

2n
, k = 0,1, . . . ,2n − 1, (5.2)

and

c̃n,q = 1

2n

2n−1∑
k=0

eq(xn,k)u(xn,k) = 1

2n

2n−1∑
k=0

e−iqkπ/nu(xn,k), −n ≤ q ≤ n. (5.3)

In addition, the c̃n,q are related to the cq as in
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c̃n,p = cp +
∞∑

τ=−∞
τ 
=0

cp+2nτ . (5.4)

• Next, we approximate Km(t; u) by Km(t; φn). That is, our numerical quadrature formula Q m,n(t; u) for Km(t; u) is simply

Q m,n(t; u) = Km(t;φn). (5.5)

Thus, because φn(x) = ∑′′ n
q=−nc̃n,qeq(x) is a finite sum, we can immediately write

Q m,n(t; u) = Km

(
t;

n∑
q=−n

′′ c̃n,qeq

)
=

n∑
q=−n

′′ c̃n,q Km(t; eq), (5.6)

which, upon invoking (4.2), becomes

Q m,n(t; u) =
n∑

q=−n

′′ c̃n,q Lm,qeq(t). (5.7)

Clearly, in this form, Q m,n(t; u) is very easy to compute once the c̃n,q have been computed.
Substituting (5.3) into (5.7) and rearranging, we also obtain Q m,n(t; u) as a trigonometric sum as follows:

Q m,n(t; u) = 1

2n

2n−1∑
k=0

[ n∑
q=−n

′′ Lm,qeq(t − xn,k)

]
u(xn,k). (5.8)

Remarks 1.

1. By (5.1)–(5.8), it is clear that the only input we need for computing Q m,n(t; u) is the set {u(xn,0), u(xn,1), . . . , u(xn,2n−1)}, 
which we use for computing the c̃n,q; no derivative information from u(x) is required.

2. By (3.11)–(3.17) and (5.5), we have that

Q m,n(t; u) = Km(t;φn) = K0(t;�m,n),

where

�m,n = −2μφ′
n if m = 1

while

�m,n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r∑
k=1

βr,kμ
2kφ

(2k)
n if m = 2r, r = 1,2, . . . ,

r∑
k=1

βr,k

r
μ2k+1φ

(2k+1)
n if m = 2r + 1, r = 1,2, . . . .

This means that our numerical quadrature formula Q m,n(t; u) replaces u(s)(x) in the composition of Um(x) resulting 
from Km(t; u) = K0(t; Um) by φ(s)

n (x). This takes place only implicitly, however, as is obvious from (5.7), since the Lm,q
are readily available by Theorem 4.1.

3. Even though φn(xn,k) = u(xn,k), we have only φ(s)
n (xn,k) ≈ u(s)(xn,k), k = 0, 1, . . . , 2n − 1, for s = 1, 2, . . . .

5.2. Convergence of Q m,n(t; u)

We now turn to the study of the convergence as n → ∞ of Q m,n(t; u). We begin by deriving upper bounds on the 
absolute errors |Q m,n(t; u) − Km(t; u)| that we express in terms of the Fourier coefficients of u(x).

Theorem 5.1. For each m and n, the absolute errors |Q m,n(t; u) − Km(t; u)| can be bounded as follows:

for m = 0: |Q 0,n(t; u) − K0(t; u)| ≤
∑
|q|≥n

′′ |cq|(|L0,0| + |L0,q|), (5.9)

for m = 1: |Q 1,n(t; u) − K1(t; u)| ≤ 2T
∑
|q|≥n

′′ |cq|, (5.10)

for m ≥ 2: |Q m,n(t; u) − Km(t; u)| ≤
∑
|q|≥n

′′ |cq|(|Lm,n| + |Lm,q|). (5.11)
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Note that all the bounds here are independent of t.

Proof. By (4.21), (5.4), and (5.7), we have

Q m,n(t; u) − Km(t; u) =
n∑

p=−n

′′ c̃n,p Lm,pep(t) −
∞∑

q=−∞
cq Lm,qeq(t)

=
∑
|p|≤n

′′
(

cp +
∞∑

τ=−∞
τ 
=0

cp+2nτ

)
Lm,pep(t) −

∞∑
q=−∞

cq Lm,qeq(t)

=
∑
|p|≤n

′′
( ∞∑

τ=−∞
τ 
=0

cp+2nτ

)
Lm,pep(t) −

∑
|q|≥n

′′ cq Lm,qeq(t),

which, upon taking moduli, gives

|Q m,n(t; u) − Km(t; u)| ≤
∑
|p|≤n

′′
( ∞∑

τ=−∞
τ 
=0

|cp+2nτ |
)

|Lm,p| +
∑
|q|≥n

′′ |cq||Lm,q|. (5.12)

To continue, we make use of (4.9)–(4.11) that follow the proof of Theorem 4.1.
For m = 0, we start by noting that |L0,0| > |L0,±1| > |L0,±2| > · · · . Therefore, (5.12) gives

|Q 0,n(t; u) − K0(t; u)| ≤ |L0,0|
( ∑

|p|≤n

′′
∞∑

τ=−∞
τ 
=0

|cp+2nτ |
)

+
∑
|q|≥n

′′ |cq||L0,q|,

which, by Lemma A.2, results in (5.9).
For m = 1, by the fact that |L1,q| = T for all q 
= 0, (5.12) becomes

|Q 1,n(t; u) − K1(t; u)| ≤ T
∑
|p|≤n

′′
( ∞∑

τ=−∞
τ 
=0

|cp+2nτ |
)

+ T
∑
|q|≥n

′′ |cq|,

which, by Lemma A.2, results in (5.10).
For m = 2, 3, . . . , recalling that for |q| ≥ �m/2
, we have |Lm,q| ≥ |Lm,q′ | for |q| ≥ |q′|, we have∑

|p|≤n

′′
( ∞∑

τ=−∞
τ 
=0

|cp+2nτ |
)

|Lm,p| ≤ |Lm,n|
( ∑

|p|≤n

′′
∞∑

τ=−∞
τ 
=0

|cp+2nτ |
)

= |Lm,n|
∑
|q|≥n

′′ |cq| by Lemma A.2, (5.13)

which, upon substituting into (5.12), gives (5.11). �

The next theorem provides the rates at which Q m,n(t; u) converges to Km(t; u) as n → ∞ for all t ∈ R. It follows from 
Theorem 5.1 and from

cq = O (|q|−M−α−1) and Lm,q = O (|q|m−1) as q → ±∞.

Theorem 5.2.

1. If u(x) is T -periodic and in the Hölder class C M+1,α(0, T ), and if m ≤ M, then

for m = 0: |Q 0,n(t; u) − K0(t; u)| = O (n−M−α) as n → ∞, (5.14)

for m ≥ 1: |Q m,n(t; u) − Km(t; u)| = O (n−M−α−1+m) as n → ∞. (5.15)

2. If u(x) is T -periodic and in C∞(R), then, for m ≥ 0,

|Q m,n(t; u) − Km(t; u)| = o(n−λ) as n → ∞ ∀λ > 0, (5.16)

that is, Q m,n(t; u) converges spectrally.
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3. In case u(z) is also T -periodic and analytic in an infinite strip Dρ of the complex z-plane, where

Dρ = {z ∈C : |Im z| < ρ}, (5.17)

then, for m ≥ 0,

|Q m,n(t; u) − Km(t; u)| = O (e−2nπθ/T ) as n → ∞, ∀θ ∈ (0,ρ). (5.18)

All these results are valid uniformly in t.

5.3. Exactness property of Q m,n(t; u)

We now prove some exactness results pertaining to Q m,n(t; u).

Theorem 5.3. The numerical quadrature formula Q m,n(t; u) has the following exactness property:

Q m,n(t; u) = Km(t; u) if u(x) =
n∑

q=−n

′′ cqeq(x) with cn = c−n.

In particular,

Q m,n(t; eq) = Km(t; eq) = Lm,qeq(t), q = 0,±1, . . . ,±(n − 1),

Q m,n(t; en + e−n) = Km(t; en + e−n) = Lm,nen(t) + Lm,−ne−n(t).

In words, Q m,n(t; u) reproduces Km(t; u) when u(x) is a balanced trigonometric polynomial of degree at most n.

Proof. By Lemma A.1 in the appendix when u(x) = ∑′′ n
q=−n cqeq(x) with cn = c−n , there holds φn(x) ≡ u(x). Therefore,

Q m,n(t; u) = Km(t;φn) = Km(t; u).

This completes the proof. �

Following Theorem 5.3, which provides Q m,n(t; eq) for |q| ≤ n − 1, Theorem 5.4 below provides Q m,n(t; eq) for |q| ≥ n.

Theorem 5.4. Define the set of integers � as � = {±n, ±3n, ±5n, . . .}.

1. If q ∈ �, then q = (2 j + 1)n for some integer j, and

Q m,n(t; eq) = Q m,n(t; e±n) = 1

2
[Lm,nen(t) + Lm,−ne−n(t)]. (5.19)

2. If q /∈ �, then there exist unique integers τ and s, |s| ≤ n − 1, such that q = 2nτ + s, and

Q m,n(t; eq) = Q m,n(t; es) = Lm,ses(t). (5.20)

Proof. We begin by rewriting (5.8) in the form

Q m,n(t; u) =
2n−1∑
k=0

Wm,n,k(t)u(xn,k), Wm,n,k(t) = 1

2n

n∑
p=−n

′′ Lm,pep(t − xn,k). (5.21)

Clearly, Wm,n,k(t) are independent of u(x). This implies that if u1(x) and u2(x) are two different functions for which 
u1(xn,k) = u2(xn,k), k = 0, 1, . . . , 2n − 1, then Q m,n(t; u1) = Q m,n(t; u2). We make use of this fact in the sequel.

Now let u(x) = eq(x) in (5.21) and note that eq(xn,k) = eiqkπ/n . There are two cases to consider:

1. q ∈ �: In this case, q = (2 j + 1)n for some integer j, and we have

eq(xn,k) = ei(2 j+1)kπ = (−1)k = e±n(xn,k) independent of j.

When substituted into (5.21), this gives

Q m,n(t; eq) = Q m,n(t; e±n) ∀q ∈ �.

Now, the balanced trigonometric interpolant of degree n to u(x) = e±n(x) is simply
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φ̂n(x) = 1

2
[en(x) + e−n(x)].

The result in (5.19) follows by invoking Q m,n(t; e±n) = Km(t; ̂φn) and Theorem 5.3.
2. q /∈ �: In this case, q = 2nτ + s with unique integers τ and s, |s| ≤ n − 1, as can be verified easily. Next,

eq(xn,k) = ei(2τkπ+skπ/n) = eiskπ/n = es(xn,k).

When substituted in (5.21), this gives

Q m,n(t; eq) = Q m,n(t; es).

Since |s| ≤ n − 1, we can now invoke Theorem 5.3 and obtain (5.20).

This completes the proof. �

6. Numerical examples

We now apply the numerical method we have just developed to the integrals Km(t; u), m = 0, 1, . . . , 5, with T = 2π

(hence μ = 1), where

u(x) =
∞∑

q=0

ηq cos qx = Re
1

1 − ηeix
, η real, 0 < η < 1. (6.1)

Clearly, u(x) is infinitely differentiable and 2π -periodic on R. In addition, u(x) can be continued to the complex z-plane, 
such that u(z), is also 2π -periodic and analytic in the infinite strip

Dρ = {z ∈C : |Im z| < ρ},
with ρ = logη−1. Finally, Km(t; u) can be computed numerically by summing the Fourier series in (4.21) that converges 
quickly in our case here. We first have

c0 = 1; cq = η|q|/2, q 
= 0.

Next, by (4.19) and (4.21),

K0(t; u) = −2π log 2 − π

∞∑
q=1

1

q
ηq cos qt = π log

( |1 − ηeit |
4

)

K1(t; u) = −2π

∞∑
q=1

ηq sin qt = −2π Im
1

1 − ηeit

K2(t; u) = −4π

∞∑
q=1

qηq cos qt = −4π Re
ηeit

(1 − ηeit)2

K3(t; u) = 4π

∞∑
q=1

q2ηq sin qt = 4π Im
ηeit(1 + ηeit)

(1 − ηeit)3

K4(t; u) = 8π

3

∞∑
q=1

q(q2 − 1)ηq cos qt

K5(t; u) = −4π

3

∞∑
q=1

q2(q2 − 1)ηq sin qt

and so on.
We have applied our quadrature formulas Q m,n(t; u) as shown in (5.7), to the integrals Km(t; u) with t = 1 using 

quadruple-precision arithmetic with roundoff unit u = 1.93 × 10−34. The results of our computations for m = 0, 1, . . . , 5
are shown in Tables 6.0–6.5. Note that because u(z) is analytic in the infinite strip Dρ with ρ = logη−1, we have that 
the error [Q m,n(t; u) − Km(t; u)] tends to zero as n → ∞ exponentially in n like ηn by Theorem 5.2. Our numerical results 
confirm this amply for the different values of η. Finally, we recall that Q m,n(t; u) requires only 2n evaluations of u(x) and 
no evaluations of derivatives of u(x).
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Table 6.0
Numerical results for Q 0,n(t; u) with t = 1 and u(x) as in (6.1). Here En(η = c) = |Q 0,n(t; u) − K0(t; u)|/|K0(t; u)| for η = c.

n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

20 6.00D − 23 1.33D − 16 6.93D − 13 2.99D − 10 3.28D − 08
40 3.41D − 34 5.62D − 31 9.84D − 24 1.36D − 18 1.31D − 14
60 6.82D − 34 3.31D − 34 3.23D − 34 3.98D − 27 3.26D − 21
80 0.00D + 00 0.00D + 00 6.45D − 34 1.27D − 33 7.82D − 27
100 5.12D − 34 4.96D − 34 6.45D − 34 1.59D − 34 3.15D − 33
120 3.41D − 34 0.00D + 00 6.45D − 34 3.17D − 34 3.15D − 34

Table 6.1
Numerical results for Q 1,n(t; u) with t = 1 and u(x) as in (6.1). Here En(η = c) = |Q 1,n(t; u) − K1(t; u)|/|K1(t; u)| for η = c.

n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

20 8.16D − 21 8.56D − 15 2.85D − 11 8.97D − 09 7.78D − 07
40 4.80D − 32 1.47D − 28 1.62D − 21 1.61D − 16 1.21D − 12
60 5.26D − 33 7.50D − 34 8.24D − 32 2.53D − 24 1.65D − 18
80 3.37D − 32 1.40D − 32 5.58D − 33 1.33D − 34 1.83D − 25
100 1.21D − 31 6.17D − 32 4.15D − 32 2.82D − 32 1.34D − 30
120 2.28D − 32 9.45D − 33 4.84D − 33 6.63D − 34 1.34D − 33

Table 6.2
Numerical results for Q 2,n(t; u) with t = 1 and u(x) as in (6.1). Here En(η = c) = |Q 2,n(t; u) − K2(t; u)|/|K2(t; u)| for η = c.

n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

20 7.94D − 19 1.63D − 12 7.41D − 08 1.43D − 06 6.48D − 05
40 8.67D − 31 2.82D − 26 4.22D − 18 2.53D − 14 9.85D − 11
60 1.88D − 30 1.85D − 30 7.32D − 29 1.74D − 22 6.00D − 17
80 1.35D − 29 1.28D − 29 1.11D − 28 1.31D − 29 2.42D − 22
100 1.25D − 29 1.40D − 29 1.43D − 28 7.07D − 30 1.49D − 28
120 9.70D − 30 6.91D − 30 4.68D − 29 1.59D − 30 5.41D − 31

Table 6.3
Numerical results for Q 3,n(t; u) with t = 1 and u(x) as in (6.1). Here En(η = c) = |Q 3,n(t; u) − K3(t; u)|/|K3(t; u)| for η = c.

n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

20 2.80D − 18 2.49D − 12 8.12D − 09 3.15D − 06 5.80D − 04
40 3.06D − 29 1.60D − 25 1.86D − 18 2.45D − 13 4.24D − 09
60 1.90D − 29 1.07D − 29 1.99D − 28 8.49D − 21 1.25D − 14
80 1.31D − 28 5.06D − 29 3.13D − 29 9.63D − 30 2.17D − 21
100 4.11D − 28 1.88D − 28 1.33D − 28 1.27D − 28 2.88D − 26
120 2.84D − 28 1.18D − 28 6.98D − 29 5.02D − 29 5.88D − 29

Table 6.4
Numerical results for Q 4,n(t; u) with t = 1 and u(x) as in (6.1). Here En(η = c) = |Q 4,n(t; u) − K4(t; u)|/|K4(t; u)| for η = c.

n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

20 2.56D − 16 9.52D − 11 1.84D − 07 4.74D − 05 4.95D − 03
40 5.46D − 28 6.68D − 24 4.16D − 17 3.26D − 12 2.86D − 08
60 1.05D − 26 1.76D − 27 1.34D − 27 5.26D − 20 4.24D − 14
80 3.03D − 26 5.21D − 27 1.84D − 27 5.33D − 27 2.89D − 19
100 5.48D − 26 1.20D − 26 5.43D − 27 3.63D − 27 2.70D − 25
120 3.59D − 26 2.23D − 27 2.63D − 28 7.87D − 28 1.25D − 27

Table 6.5
Numerical results for Q 5,n(t; u) with t = 1 and u(x) as in (6.1). Here En(η = c) = |Q 5,n(t; u) − K5(t; u)|/|K5(t; u)| for η = c.

n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

20 1.56D − 15 6.16D − 09 1.18D − 06 1.19D − 04 6.06D − 03
40 4.23D − 26 1.47D − 21 1.08D − 15 4.03D − 11 2.12D − 07
60 1.30D − 25 3.00D − 25 2.57D − 25 3.08D − 18 1.36D − 12
80 1.13D − 24 2.12D − 24 8.61D − 26 1.23D − 26 3.63D − 19
100 3.37D − 24 7.24D − 24 3.23D − 25 8.71D − 26 8.81D − 24
120 3.25D − 24 6.49D − 24 2.47D − 25 5.31D − 26 2.20D − 26
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7. Application to general =́T
0 f (x, t) dx with m ≥ 1

7.1. Treatment of general f (x, t)

So far, we have dealt with the HFP integrals Km(t; u) = =́T
0 f (x, t) dx, where f (x, t) is T -periodic in x and is expressed as 

[recall (1.1a)–(1.1b)]

f (x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos π(x−t)

T

sinm π(x−t)
T

u(x)dx, 0 < t < T , if m = 1,3,5, . . . ,

1

sinm π(x−t)
T

u(x)dx, 0 < t < T , if m = 2,4,6, . . . ,

(7.1)

u(x) being T -periodic and sufficiently differentiable on R. We also mentioned that the Cauchy transforms Jm(t; w) on the 
unit circle described in Section 1 are actually linear combinations of Ks(t; ̂w), s = 1, 2, . . . , m, where ŵ(x) = w(eix).

We now consider the general HFP integrals Im(t; f ) = =́T
0 f (x, t) dx, where f (x, t) is T -periodic in x ∈ R and has the 

general form

f (x, t) = g(x, t)

(x − t)m
, 0 < t < T , m ∈ {1,2, . . .}, (7.2)

such that g(x, t) is sufficiently differentiable as a function of x on R. In addition, t is being held fixed throughout. [Note 
that g(x, t) is not T -periodic since (x − t)−m is not.]

Let us define the functions vm(x, t) as follows:

vm(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(
i π(x−t)

T

)
sinm π(x−t)

T

if m = 1,3,5, . . . ,

1

sinm π(x−t)
T

if m = 2,4,6, . . . .

(7.3)

Clearly, for each m = 1, 2, . . . , and with fixed t , vm(x, t) is T -periodic and also nonzero for x ∈ R with poles of order m at 
x = t ± kT , k = 0, 1, 2, . . . , and is infinitely differentiable on R \ {t ± kT }∞k=0. In addition, vm(z, t) continues to be T -periodic 
and nonzero in the whole complex z-plane and is meromorphic with poles of order m at z = t ± kT , k = 0, 1, 2, . . . .

We can now express f (x, t) in the form

f (x, t) = u(x, t)vm(x, t) ⇒ u(x, t) = f (x, t)

vm(x, t)
= g(x, t)

(x − t)m vm(x, t)
. (7.4)

Clearly, u(x, t) is T -periodic and sufficiently differentiable on R because vm(x, t) does not vanish anywhere in R.5 Assuming 
that g(x, t) is known/computable, we can easily compute u(x, t) numerically from

u(x, t) =
(

π

T

)m

×

⎧⎪⎨⎪⎩
g(x, t)

[
sinc

(π(x − t)

T

)]m
e−iπ(x−t)/T if m = 1,3,5, . . . ,

g(x, t)
[
sinc

(π(x − t)

T

)]m
if m = 2,4,6, . . . ,

(7.5)

where

sinc(z) = sin z

z
is the sinc function, which is defined and is easily computable everywhere and is positive for z ∈ (−π, π), with sinc(0) = 1. 
Therefore, we also have that

u(t, t) =
(

π

T

)m

g(t, t) ∀m ≥ 1.

Comparing (7.3) with (2.1), we realize that

vm(x, t) =

⎧⎪⎨⎪⎩
S1(

π(x−t)
T ) + i if m = 1,

S2r+1(
π(x−t)

T ) + iS2r(
π(x−t)

T ) if m = 2r + 1, r = 1,2, . . . ,

S2r(
π(x−t)

T ) if m = 2r, r = 1,2, . . . .

(7.6)

5 If vm(x, t) vanishes at some point in (0, T ), then u(x, t) must have a pole at that same point, which is not consistent with our demand that u(x, t)
be sufficiently differentiable on R. The function cos π(x−t)

T /sinm π(x−t)
T for m = 1, 3, 5, . . . in (7.1) vanishes at one of the points x = t ± T /2 in the interval 

(0, T ), thus cannot serve as vm(x, t) when m = 1, 3, 5, . . . .
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Defining as before

Km(t; u(·, t)) = =
Tˆ

0

Sm

(
π(x − t)

T

)
u(x, t)dx, (7.7)

we can express the HFP integrals

=
Tˆ

0

f (x, t)dx = =
Tˆ

0

u(x, t)vm(x, t)dx ≡ K̃m(t; u(·, t))

as follows:

K̃m(t; u(·, t)) =

⎧⎪⎨⎪⎩
K1(t; u(·, t)) + i

´ T
0 u(x, t)dx if m = 1,

K2r+1(t; u(·, t)) + iK2r(t; u(·, t)) if m = 2r + 1, r = 1,2, . . . ,

K2r(t; u(·, t)) if m = 2r, r = 1,2, . . . .

(7.8)

Noting that 
´ T

0 u(x, t) dx (for m = 1) is already a regular integral that can be computed with spectral accuracy by the 
trapezoidal rule, we see that we have to deal only with the individual Km(t; u(·, t)), m = 1, 2, . . . , which we already know 
how to handle via regularization and trigonometric interpolation. Denoting by Q̃ m,n(t; u(·, t)) the quadrature formulas for 
K̃m(t; u(·, t)), we have

Q̃ m,n(t; u(·, t)) =

⎧⎪⎨⎪⎩
Q 1,n(t; u(·, t)) + i T

2n

∑2n−1
k=0 u(xn,k, t) if m = 1,

Q 2r+1,n(t; u(·, t)) + iQ 2r,n(t; u(·, t)) if m = 2r + 1, r = 1,2, . . .,

Q 2r,n(t; u(·, t)) if m = 2r, r = 1,2, . . ..

(7.9)

Actually, by (5.8), we can express Q̃ m,n(t; u(·, t)) as

Q̃ m,n(t; u(·, t)) = 1

2n

2n−1∑
k=0

[ n∑
q=−n

′′ L̃m,qeq(t − xn,k)

]
u(xn,k, t), (7.10)

where

L̃1,0 = L1,0 + iT ; L̃1,q = L1,q ∀q 
= 0, (7.11)

L̃2r,q = L2r,q L̃2r+1,q = L2r+1,q + iL2r,q, ∀q, r = 1,2, . . . . (7.12)

Observe that we only need the 2n function values u(xn,k, t), k = 0, 1, . . . , 2n − 1, to compute Q̃ m,n(t; u(·, t)) for every m.
Below, we will continue to use the new notation K̃m(t; ·), ̃Lm,q , and Q̃ m,n(t; ·).

7.2. Application to singular integral equations

We now consider the application of the quadrature formulas Q̃ m,n(t; ·) to the numerical solution of singular integral 
equations of the form

λw(t) + =
Tˆ

0

G(x, t)w(x)dx = θ(t), t ∈ [0, T ], (7.13)

which arise in boundary integral formulations of some two-dimensional boundary value problems, at least for m = 1, 2. 
Here the constant λ and the functions G(x, t) and θ(x) are known; w(x) is the unknown function, hence is the required 
solution to this equation. G(x, t) is usually some sort of Green’s function.

1. G(x, t) is T -periodic both in x and in t . It is sufficiently differentiable as a function of x on R \ {t ± kT }∞k=0 and, for 
0 ≤ x ≤ T , it is of the form

G(x, t) = H(x, t)

(x − t)m
, 0 < t < T , (7.14)

H(x, t) being sufficiently differentiable and known/computable for x and t in [0, T ]. [Note that H(x, t) is not T -periodic 
since (x − t)−m is not.]

2. w(x) and θ(x) are T -periodic and sufficiently differentiable on R.
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Additional conditions may have to be imposed on G(x, t) and/or θ(x) to ensure uniqueness of solution; we will skip this 
issue below.

With the functions vm(x, t) defined as in (7.3), we define N(x, t) and u(x, t) as

N(x, t) = G(x, t)

vm(x, t)
, u(x, t) = N(x, t)w(x) ⇒ G(x, t)w(x) = u(x, t)vm(x, t), (7.15)

and recall that, when H(x, t) is known, with x, t ∈ [0, T ], N(x, t) can be computed from [cf. (7.5)]

N(x, t) =
(

π

T

)m

×
{

H(x, t)
[
sinc

(π(x−t)
T

)]m
e−iπ(x−t)/T if m = 1,3,5, . . . ,

H(x, t)
[
sinc

(π(x−t)
T

)]m
if m = 2,4,6, . . . ,

(7.16)

with

N(t, t) =
(

π

T

)m

H(t, t). (7.17)

Let us also observe that N(x, t) and w(x, t) are T -periodic in x and are sufficiently differentiable, therefore, so is their 
product u(x, t). Finally, let us rewrite (7.13) in the form

λw(t) + K̃m(t; N(·, t)w(·)) = θ(t). (7.18)

We now turn to the numerical solution of this integral equation. First, we set xn,k = kT /(2n), k = 0, 1, . . . , 2n − 1, 
and replace K̃m(t; N(·, t)w(·)) by Q̃ m,n(t; N(·, t)w(·)). Next, we replace u(x, t) = N(x, t)w(x) by φn(x, t), its trigonomet-
ric interpolant at the 2n points xn,k , and replace w(xn,k) everywhere by the approximation w̃n,k . Finally, we set t = xn, j , 
j = 0, 1, . . . , 2n − 1, everywhere. This results in the following 2n equations in the 2n unknowns w̃n,k:

λw̃n, j + 1

2n

2n−1∑
k=0

[ n∑
q=−n

′′ L̃m,qeq(xn, j − xn,k)

]
N(xn,k, xn, j)w̃n,k = θ(xn, j), 0 ≤ j ≤ 2n − 1. (7.19)

Since the underlying numerical quadrature formula Q̃ m,n(t; N(·, t)w(·)) has high accuracy, we expect the w̃n,k to approxi-
mate the w(xn,k) with high accuracy too.

8. Treatment of ́ T
0 f (x, t) dx with m = 0

Recall that we have also dealt with the regular integrals K0(t; u) = ´ T
0 f (x, t) dx, where f (x, t) is T -periodic in x and is 

expressed as [recall (1.2)]

f (x, t) =
(

log

∣∣∣∣ sin
π(x − t)

T

∣∣∣∣)u(x), 0 < t < T , (8.1)

u(x) being T -periodic and sufficiently differentiable on R. We now consider the regular integrals I0(t; f ) =
´ T

0 f (x, t) dx
where f (x, t) is T -periodic in x ∈R and has the general form

f (x, t) =
(

log
∣∣ψ(x) − ψ(t)

∣∣)w(x), 0 < t < T , (8.2)

such that ψ(x) and w(x) are T -periodic and sufficiently differentiable on R, and ψ ′(x) 
= 0 on [0, T ]. In addition, t is 
being held fixed throughout. Integrals like this appear in boundary integral equation formulation of certain two-dimensional 
boundary value problems dealt with in some of the papers mentioned in the Introduction. Dividing and multiplying 

∣∣ψ(x) −
ψ(t)

∣∣ by 
∣∣ sin π(x−t)

T

∣∣, we now express f (x, t) in the form

f (x, t) =
[

H(x, t) +
(

log

∣∣∣∣ sin
π(x − t)

T

∣∣∣∣)]
w(x), (8.3)

where

H(x, t) = log

(
T

π

|ψ[x, t]|
sinc

(π(x−t)
T

))
, ψ[x, t] =

⎧⎨⎩
ψ(x) − ψ(t)

x − t
if x 
= t,

ψ ′(t) if x = t.
(8.4)

Note that H(x, t) is T -periodic and sufficiently differentiable on R because ψ[x, t] is nonzero and of one sign on [0, T ]. 
Therefore,
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Tˆ

0

f (x, t)dx =
Tˆ

0

H(x, t)w(x)dx + K0(t; w). (8.5)

We already know how to handle K0(t; w); we simply approximate it by K0(t; φn), where φn(x) is the balanced trigonometric 
polynomial that interpolates w(x) precisely as described in Section 5. The integral 

´ T
0 H(x, t)w(x) dx can be evaluated by the 

trapezoidal rule using the interpolation points for w(x) [hence for φn(x)] as the abscissas. Thus, the combined computational 
cost is again 2n evaluations of w(x) at these interpolation points. If ψ(x) and w(x) are infinitely differentiable on R, then 
the convergence of the quadrature method is spectral.

We leave the discussion concerning the application of this approach to the solution of the relevant integral equations to 
the reader. Of course, this can be achieved as described in Section 7, with proper modifications.

Appendix A. Trigonometric interpolation

A.1. Construction of the trigonometric interpolant φn(x)

Let u(x) be continuous on the interval [0, T ]. Let us denote by φn(x) the balanced trigonometric polynomial of degree n
that interpolates u(x) on [0, T ] at the 2n equidistant points xn,0, xn,1, . . . , xn,2n−1 in [0, T ], where

xn,k = kT

2n
, k = 0,1, . . . ,2n − 1. (A.1)

Thus, with eq(x) = ei2qπx/T as before,

φn(x) =
n∑

q=−n

′′ c̃n,qeq(x), c̃n,n = c̃n,−n; φn(xn,k) = u(xn,k), k = 0,1, . . . ,2n − 1. (A.2)

Here the double prime on the summation 
∑′′ n

q=−n means that the terms with q = ±n are to be multiplied by 1/2.6 With 
these xn,k , let us define the discrete inner product (· , ·) as in

(G , H) =
2n−1∑
k=0

G(xn,k) H(xn,k). (A.3)

Then the functions eq(x) have the discrete orthogonality property

(ep , eq) =
2n−1∑
k=0

ei(q−p)kπ/n =
{

2n if q − p = 2nτ , τ = 0,±1,±2, . . . ,

0 otherwise.
(A.4)

Therefore,

c̃n,q = (eq , u)

2n
= 1

2n

2n−1∑
k=0

e−iqkπ/nu(xn,k), −n ≤ q ≤ n. (A.5)

Note that, for c̃n,0, c̃n,n , and c̃n,−n , (A.5) gives

c̃n,0 = 1

2n

2n−1∑
k=0

u(xn,k); c̃n,n = c̃n,−n = 1

2n

2n−1∑
k=0

(−1)ku(xn,k). (A.6)

Substituting (A.5) into (A.2), φn(x) can also be expressed as a trigonometric polynomial as in

6 Note that c̃n,n = c̃n,−n amounts to φn(x) being necessarily of the form

φn(x) = ã0 +
n−1∑
q=1

[ãq cos(qx/μ) + b̃q sin(qx/μ)] + ãn cos(nx/μ), μ = T

2π
,

ã0 = c̃n,0; ãq = c̃n,q + c̃n,−q, b̃q = i(c̃n,q − c̃n,−q), q = 1, . . . ,n − 1; ãn = c̃n,±n.

The way we have defined things here, the trigonometric interpolant φn(x) is said to be balanced. See Henrici [10, p. 43].
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φn(x) = 1

2n

2n−1∑
k=0

[ n∑
q=−n

′′ eq(x − xn,k)

]
u(xn,k)

=
2n−1∑
k=0

Dn
(
(x − xn,k)/μ

)
u(xn,k), μ = T

2π
, (A.7)

where Dn(y) is the Dirichlet kernel given as

Dn(y) = 1

2n

n∑
q=−n

′′ eiqy = 1

2n
sin(ny) cot(y/2). (A.8)

Note. c̃n,q is the trapezoidal rule approximation to the integral representation of the Fourier coefficient cq of u(x), namely, 
cq = 1

T

´ T
0 eq(x)u(x) dx. Therefore, c̃n,0 is the trapezoidal rule approximation to the integral c0 = 1

T

´ T
0 u(x) dx.

The following lemma, whose proof can be achieved by invoking (A.4), concerns the reproducing property of trigonometric 
interpolation as defined above.

Lemma A.1. As defined above via (A.1)–(A.5), trigonometric interpolation reproduces balanced trigonometric polynomials of degree at 
most n in the following sense: if u(x) = ∑′′ n

q=−ncqeq(x) with cn = c−n, then φn(x) ≡ u(x).

Throughout this appendix, we will assume that the function u(x) is T -periodic and in the Hölder class C M+1,α(0, T ), 
0 < α ≤ 1. (See footnote 3.) As a result, u(s)(x), s = 0, 1, . . . , M , have Fourier series that converge absolutely and uniformly 
on R. (See subsection 4.2.)

We will also be using the notation 
∑′′

|p|≤n and 
∑′′

|q|≥n to mean that the terms with p = ±n and q = ±n, respectively, are 
to be multiplied by 1/2.

A.2. A general summation lemma

The following well known summation lemma is useful in the convergence analysis of the trigonometric interpolation 
polynomial φn(x) and of its derivatives and of Q m,n(t; u) = Km(t; φn). In this lemma, the cq are arbitrary constants. We 
provide an independent proof of it here.

Lemma A.2. Assume that 
∑∞

q=−∞ cq converges absolutely. Then, for arbitrary n,

∑
|p|≤n

′′
∞∑

τ=−∞
τ 
=0

|cp+2nτ | =
∑
|q|≥n

′′ |cq|. (A.9)

That is, the left-hand side of (A.9) is a rearrangement of the right-hand side.

Proof. We start by rewriting the double summation in the form

∑
|p|≤n

′′
∞∑

τ=−∞
τ 
=0

|cp+2nτ | = 1

2

∞∑
τ=−∞
τ 
=0

(|cn+2nτ | + |c−n+2nτ |) +
∑

|p|≤n−1

∞∑
τ=−∞
τ 
=0

|cp+2nτ |, (A.10)

separating the contributions of the terms with p = ±n from those with |p| ≤ n − 1.
We first note that

1

2

∞∑
τ=−∞
τ 
=0

(|cn+2nτ | + |c−n+2nτ |) = 1

2

(|c−n| + |cn|) +
∞∑
j=1

(|c(2 j+1)n| + |c−(2 j+1)n|
)

is the sum of all those terms in 
∑′′

|q|≥n |cq| with q = ±(2 j + 1)n, j = 0, 1, 2, . . . .
Next, we claim that the double sum on the right-hand side of (A.10) is actually the sum of the remaining terms in ∑′′

|q|≥n |cq|. This follows from the fact that for every integer q, q 
= ±(2 j + 1)n, j = 0, 1, . . . , there exist unique integers τ
and p, τ ∈ {±1, ±2, . . .} and −(n − 1) ≤ p ≤ n − 1, such that q = p + 2nτ .

This completes the proof of (A.9). �
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A.3. Convergence of φn(x) and its derivatives

Consider the Fourier series of u(x), namely,

u(x) ∼
∞∑

q=−∞
cqeq(x), cq = 1

T

Tˆ

0

eq(x)u(x)dx. (A.11)

Then, by (A.5), there holds

c̃n,p = (ep , u)

2n
= 1

2n

(
ep,

∞∑
q=−∞

cqeq

)
=

∞∑
q=−∞

cq
(ep , eq)

2n
,

which, upon invoking (A.4), gives

c̃n,p =
∞∑

τ=−∞
cp+2nτ = cp +

∞∑
τ=−∞
τ 
=0

cp+2nτ , −n ≤ p ≤ n. (A.12)

Theorem A.3 that follows concerns the convergence of the sequence {φn(x)}∞n=1 to u(x) and is well known. (See, for 
example, Kress [11], [12]. See also Gaier [6], Henrici [9], [10], and Gander, Gander, and Kwok [7].)

Theorem A.3. The sequence {φn(x)}∞n=1 converges to u(x) absolutely and uniformly on [0, T ]. Actually, there holds

max
0≤x≤2π

|φn(x) − u(x)| ≤ 2
∑
|q|≥n

′′ |cq|. (A.13)

Proof. We start by observing that

φn(x) − u(x) =
∑
|p|≤n

′′ c̃n,p ep(x) −
∞∑

q=−∞
cqeq(x)

=
∑
|p|≤n

′′
(

cp +
∞∑

τ=−∞
τ 
=0

cp+2nτ

)
ep(x) −

∞∑
q=−∞

cqeq(x)

=
∑
|p|≤n

′′
( ∞∑

τ=−∞
τ 
=0

cp+2nτ

)
ep(x) −

∑
|q|≥n

′′ cqeq(x), (A.14)

which, upon taking moduli, gives

max
0≤x≤2π

|φn(x) − u(x)| ≤
∑
|p|≤n

′′
∞∑

τ=−∞
τ 
=0

|cp+2nτ | +
∑
|q|≥n

′′ |cq|. (A.15)

The result in (A.13) follows by invoking Lemma A.2. �

Theorem A.4 that follows concerns the convergence of the sequence {φ(s)
n (x)}∞n=1 to u(s)(x), s = 1, 2, . . . . Recall that for 

s ≥ 1, φ(s)
n (x) does not interpolate u(s)(x) at the points xn,k in (A.1).

Theorem A.4. For s ∈ {1, 2, . . . , M}, the sequence {φ(s)
n (x)}∞n=1 converges to u(s)(x) absolutely and uniformly on [0, T ]. Actually, there 

holds

max
x∈[0,T ] |φ

(s)
n (x) − u(s)(x)| ≤

∑
|q|≥n

′′ |c(s)
q |(1 + |n/q|s), (A.16)

where c(s)
q = cq(iq/μ)s are the Fourier coefficients of u(s)(x), s = 1, 2, . . . .
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Proof. Differentiating φn(x) = ∑′′
|p|≤n c̃n,p ep(x) s times and invoking u(s)(x) = ∑∞

q=−∞ c(s)
q eq(x), we obtain

φ
(s)
n (x) − u(s)(x) =

∑
|p|≤n

′′ c̃n,p(ip/μ)sep(x) −
∞∑

q=−∞
cq(iq/μ)seq(x)

=
∑
|p|≤n

′′
(

cp +
∞∑

τ=−∞
τ 
=0

cp+2nτ

)
(ip/μ)sep(x) −

∞∑
q=−∞

cq(iq/μ)seq(x)

=
∑
|p|≤n

′′
( ∞∑

τ=−∞
τ 
=0

cp+2nτ

)
(ip/μ)sep(x) −

∑
|q|≥n

′′ cq(iq/μ)seq(x),

which, upon taking moduli, gives

max
x∈[0,T ] |φ

(s)
n (x) − u(s)(x)| ≤

∑
|p|≤n

′′
( ∞∑

τ=−∞
τ 
=0

|cp+2nτ |
)

|p/μ|s +
∑
|q|≥n

′′ |cq||q/μ|s. (A.17)

Next,

∑
|p|≤n

′′
( ∞∑

τ=−∞
τ 
=0

|cp+2nτ |
)

|p/μ|s ≤ (n/μ)s
( ∑

|p|≤n

′′
∞∑

τ=−∞
τ 
=0

|cp+2nτ |
)

= (n/μ)s
∑
|q|≥n

′′ |cq| by Lemma A.2

=
∑
|q|≥n

′′ |cq||q/μ|s |n/q|s. (A.18)

Substituting (A.18) into (A.17), we obtain

max
x∈[0,T ] |φ

(s)
n (x) − u(s)(x)| ≤

∑
|q|≥n

′′ |cq||q/μ|s(1 + |n/q|s)

This completes the proof. �

Combining the results of these two theorems, we reach the following conclusions:

1. In case M is finite, we have

max
x∈[0,T ] |φ

(s)
n (x) − u(s)(x)| = O (n−M−α+s) as n → ∞, s = 0,1, . . . , M. (A.19)

2. In case M = ∞, we have

max
x∈[0,T ] |φ

(s)
n (x) − u(s)(x)| = o(n−λ) as n → ∞ ∀λ > 0, s = 0,1, . . . , (A.20)

that is, we have spectral convergence.
3. In case u(z) is T -periodic and analytic in an infinite strip Dρ of the complex z-plane, with

Dρ = {z ∈C : |Im z| < ρ}, (A.21)

we have

|c(s)
q | = O (e−(θ/μ)|q|) as q → ±∞ ∀θ ∈ (0,ρ), (A.22)

hence the result in (A.20) improves to read

max |φ(s)
n (x) − u(s)(x)| = O (e−(θ/μ)n) as n → ∞ ∀θ ∈ (0,ρ), s = 0,1, . . . . (A.23)
x∈[0,T ]
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