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a b s t r a c t

We consider the numerical computation of Hadamard Finite Part (HFP) integrals

Hσ (t; u) = =

∫ T

0

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σu(x) dx, 0 < t < T , σ < −1, σ ̸∈ Z,

u(x) being sufficiently differentiable and T -periodic on R. Thus σ = −(m + δ), m ∈

{1, 2, 3, . . .}, 0 < δ < 1. For each such σ , we regularize Hσ (t; u), and show that

Hσ (t; u) = Hσ+2r (t;Uσ ), r = ⌊(m + 1)/2⌋,

where Uσ (x) =
∑r

k=0 aku
(2k)(x) for some constants ak, Hσ+2r (t;Uσ ) being a regu-

lar integral. We then propose to approximate Hσ (t; u) by the quadrature formula
Qσ ,n(t; u) ≡ Hσ (t;φn), where φn(x) is the nth-order balanced trigonometric polynomial
that interpolates u(x) on [0, T ] at the 2n equidistant points xn,k =

kT
2n , k = 0, 1, . . . , 2n−1.

The implementation of Qσ ,n(t; u) is simple, the only input needed for this being the
2n function values u(xn,k), k = 0, 1, . . . , 2n − 1. Using Fourier analysis techniques, we
develop a complete convergence theory for Qσ ,n(t; u) as n → ∞ and prove that it enjoys
spectral convergence when u ∈ C∞(R).

We also show that the theoretical developments and numerical quadrature formulas
developed for the HFP integrals Hσ (t; u) with σ < −1 and σ ̸∈ Z apply, with no changes,
to the regular singular integrals Hσ (t; u) with σ > −1 and σ ̸∈ Z.

We illustrate the effectiveness of Qσ ,n(t; u) with numerical examples both for σ < −1
and σ > −1.

Finally, we show that the HFP or regular integral =

∫ T
0 f (x) dx of any T -periodic

integrand f (x) that has algebraic singularities of the form |x − t + kT |
σ , 0 < t < T ,

k = 0,±1,±2, . . . , with σ ̸∈ Z, but is sufficiently differentiable in x on R \ {t ± kT }
∞

k=0,
can be expressed as Hσ (t; u), where u(x) is a T -periodic and sufficiently differentiable
function of x on R that can be computed from f (x). Therefore, =

∫ T
0 f (x) dx can be computed

efficiently using our new numerical quadrature formulas Qσ ,n(t; u) on the individual
Hσ (t; u). Again, only 2n function evaluations, namely, u(xn,k), k = 0, 1, . . . , 2n − 1, are
needed for the whole process.
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. Introduction and background

In this work, we consider the efficient numerical computation of T -periodic Hadamard Finite Part (HFP) integrals of the
form

Hσ (t; u) = =

∫ T

0

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σu(x) dx, 0 < t < T , σ < −1, σ ̸∈ Z, (1.1)

1u(x) being sufficiently differentiable and T -periodic on R, noting also that the factor
⏐⏐ sin π (x−t)

T

⏐⏐σ is T -periodic as
well. Clearly, when σ < −1, these integrals are not defined in the regular sense since their integrands have algebraic
singularities of the form |x − t|σ in (0, T ), which are not integrable. They are defined in the sense of Hadamard Finite Part
(HFP), however.

In this work, we study the analytical properties of Hσ (t; u) and derive simple and efficient numerical quadrature
ormulas for them. We approach the analysis and approximation of Hσ (t; u) in Sections 2–4, in two major steps:

• Expressing σ in the form σ = −(m + δ), m ∈ {1, 2, 3, . . .} and 0 < δ < 1, we begin by regularizing the divergent
integral∫ T

0

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σu(x) dx
in the sense that Hσ (t; u) = Hη(t;Uσ ), where Uσ (x) is some linear combination of u(2i)(x), i = 0, 1, . . . , r , where
r = ⌊(m + 1)/2⌋, and

η =

{
−δ when m = 2r
1 − δ when m = 2r − 1

⇒ η > −1,

hence Hη(t;Uσ ) is actually a regular integral, that is,

Hσ (t; u) = Hη(t;Uσ ) =

∫ T

0

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐ηUσ (x) dx.
This is done in Section 2. In Section 3, we construct the Fourier series for Hσ (t; u) by making use of the developments
of Section 2.

• In Section 4, we develop our numerical quadrature formula for Hσ (t; u) as follows: We interpolate u(x) at 2n
equidistant points in [0, T ] by a balanced trigonometric polynomial φn(x) and take Hσ (t;φn) as our approximation
to Hσ (t; u). Thus, the cost of computing Hσ (t;φn) is only 2n evaluations of u(x), no derivative information being
needed. For u ∈ CP (R), P > m, we show by using Fourier analysis techniques that limn→∞ Hσ (t;φn) = Hσ (t; u).
We also provide the rate of convergence and prove that the accuracy of Hσ (t;φn) as an approximation to Hσ (t; u)
increases as P increases. This accuracy is spectral when P = ∞, thus when u ∈ C∞(R).

In Section 5, we show that the developments of Sections 2–4 can be extended with no difficulty to the regular singular
ntegrals

Hσ (t; u) =

∫ T

0

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σu(x) dx, 0 < t < T , σ > −1, σ ̸∈ Z. (1.2)

In Section 6, we present several numerical examples that demonstrate the efficiency of our numerical quadrature
formulas, both for divergent HFP integrals (with σ < −1, σ ̸∈ Z) and for regular singular integrals (with σ > −1, σ ̸∈ Z).
In Section 7, we discuss their application to periodic singular integrals and integral equations whose integrands have an
algebraic singularity of the form |x − t|σ , σ ̸∈ Z, but are not necessarily given as in (1.1) or (1.2).

We have verified the validity of our approach by treating the examples of Section 6 numerically via a completely
different approach that uses a generalized Euler–Maclaurin expansion and Richardson extrapolation. This is explained in
detail in the appendix to this work.

We note that integrals involving Hσ (t; ·) arise in a natural way, for example, when dealing with Cauchy-like transforms
of a function w(ζ ) on the unit circle, namely,

Jσ (z;w) = =

∫
Γ

|ζ − z|σw(ζ ) dζ , z ∈ Γ = {ζ : |ζ | = 1}, σ < −1, σ ̸∈ Z,

Γ being positively oriented. Making the substitution ζ = eix, 0 ≤ x ≤ 2π , so that T = 2π , and noting that z = eit for
some unique t ∈ [0, 2π ), and denoting ŵ(x) = i2σ eixw(eix), Jσ (z;w) can be expressed as

Jσ (z;w) = =

∫ 2π

0

⏐⏐⏐⏐ sin x − t
2

⏐⏐⏐⏐σ ŵ(x) dx = Hσ (t; ŵ).

1 In the sequel, we will use the standard notation Z = {0,±1,±2,±3, . . .}.
2
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Before proceeding to the next section, we would like to mention that, in a recent paper [1], we studied and developed
umerical quadrature formulas for T -periodic HFP integrals of the form

Km(t; u) = =

∫ T

0

cos π (x−t)
T

sinm π (x−t)
T

u(x) dx, 0 < t < T , if m = 1, 3, 5, . . . , (1.3a)

Km(t; u) = =

∫ T

0

1

sinm π (x−t)
T

u(x) dx, 0 < t < T , if m = 2, 4, 6, . . . , (1.3b)

u(x) being sufficiently differentiable and T -periodic on R. Clearly, these integrals are not defined in the regular sense, too,
since their integrands have polar (as opposed to algebraic) singularities of the form (x − t)−m on (0, T ), which are not
integrable. They are defined in the sense of HFP, however. As we will see later in this work, the HFP integrals Hσ (t; u),
due to the fact σ is not an integer, are of a completely different nature than the HFP integrals Km(t; u).2

Our approach to the treatment of the HFP integrals Hσ (t; u) in this work resembles somewhat the approach we took
n [1] to the HFP integrals Km(t; u). Mathematically, it is quite different and more complicated, however.

For HFP integrals, we refer the reader to the books by Davis and Rabinowitz [2], Evans [3], Krommer and Ueberhuber [4],
nd Kythe and Schäferkotter [5]. See also the paper [6] by Monegato for a review. For trigonometric interpolation, see the
ooks by Atkinson [7], Henrici [8], and Zygmund [9], for example. See also [1, Appendix].
Finally, we would like to draw the attention of the reader to the papers [10–13] by the author that treat the periodic

FP integrals Km(t; ·) via the author’s generalized Euler–Maclaurin expansion, which can be found in [14].

. Regularization of Hσ(t; u)

We begin by recalling that if a function h(x) has a nonintegrable singularity at x = t for t ∈ (a, b) but is integrable on
ny subinterval of [a, b] that does not contain x = t , then =

∫ b
a h(x) dx, the HFP of

∫ b
a h(x) dx, is obtained by expanding

Λ(ϵ) =

∫ t−ϵ

a
h(x) dx +

∫ b

t+ϵ
h(x) dx, ϵ > 0,

symptotically as ϵ → 0+, the asymptotic expansion containing terms of the form ϵp(log ϵ)q with arbitrary p and integer
, and by discarding those terms that go to infinity and those that go to zero, and retaining the limit as ϵ → 0+ of the
emaining terms. (See Monegato [6], for example.) We will make use of this approach to the HFP next. Clearly, if

∫ b
a h(x) dx

xists as a regular integral, then limϵ→0+Λ(ϵ) =
∫ b
a h(x) dx; therefore, =

∫ b
a h(x) dx =

∫ b
a h(x) dx in such cases.

In the sequel, we will also make use of the short-hand notation

θ =
T
π
. (2.1)

heorem 2.1. Let

σ = −(m + δ), m ∈ {1, 2, 3, . . .}, 0 < δ < 1, (2.2)

nd

m̂ =

{
m if m even,
m + 1 if m odd,

⇒ m̂ ≥ 2 and even. (2.3)

hen, provided u ∈ C m̂(R) and is T -periodic, there holds

Hσ (t; ũ0) = Hσ+2(t; ũ1), (2.4)

here

ũ0(x) ≡ u(x) and ũ1(x) =
σ + 2
σ + 1

ũ0(x) +
θ2

(σ + 1)(σ + 2)
ũ′′

0(x). (2.5)

emark. On comparing the two HFP integrals Hσ+2(t; ũ1) and Hσ (t; ũ0), we realize that the former is less singular than
he latter. By applying Theorem 2.1 a number of times depending on σ , we end up with a regular integral. We will discuss
his in more detail following the proof of this theorem.

2 Note that when σ = −2r , r = 1, 2, 3, . . ., we have H−2r (t; u) = K2r (t; u), hence we need not concern ourselves with these integrals as this has
een done in [1]. In addition, the treatment of the integrals Km(t; u), m = 1, 2, . . ., in [1] is necessarily very different from the treatment of the
ntegrals H (t; u) with σ ̸∈ Z in the present work.
σ

3
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roof. Let us make the change of variable y = π (x − t)/T in the integral representation of Hσ (t; u) in (1.1). Then we have

Hσ (t; u) =
T
π

=

∫ π−π t/T

−π t/T
| sin y|σw(y) dy, w(y) ≡ u

(
t +

T
π
y
)

=
T
π

=

∫ π/2

−π/2
| sin y|σw(y) dy

=
T
π

=

∫ π

0
(sin y)σw(y) dy (2.6)

ince (i) by Sidi [15, Theorem 3.2], Hσ (t; u) is invariant under any legitimate linear or nonlinear variable transformation
hen σ < −1 and is not an integer, (ii) the integrand | sin y|σw(y) is π-periodic because both | sin y|σ and w(y) are
-periodic, and (iii) sin y ≥ 0 for 0 ≤ y ≤ π . Of course, w ∈ C m̂(R) since u ∈ C m̂(R). For simplicity of notation, let us
efine

Ĥσ (w) = =

∫ π

0
(sin y)σw(y) dy = =

∫ π/2

−π/2
| sin y|σw(y) dy. (2.7)

hen, (2.6) becomes

Hσ (t; u) = θ Ĥσ (w). (2.8)

n addition,

w(s)(y) = θ su(s)(t + θy), Hσ (t; u(s)) = θ1−sĤσ (w(s)), s = 1, 2, . . . . (2.9)

We now begin the process of regularizing Ĥσ (w). Normally, regularization of a singular integral is achieved by
ntegration by parts as many times as needed.3 Direct application of this approach is problematic in our case for the
eason that we do not want to compromise the π-periodicity of any part of the integrand in the HFP integral that follows
rom the regularization process; this is most crucial.

To achieve this goal, we begin by expressing Ĥσ (w) given as in (2.7) in the form

Ĥσ (w) = =

∫ π

0
(sin y)σ (sin2 y + cos2 y)w(y) dy,

oting that the new integrand is still π-periodic because both sin2 y and cos2 y are π-periodic. We thus have

Ĥσ (w) = Ĥσ+2(w) + E,

E = =

∫ π

0
(sin y)σ (cos y)2w(y) dy. (2.10)

ote that Ĥσ+2(w) is already less singular than Ĥσ (w). Therefore, we need to deal only with E. We first note that

E = =

∫ π

0
[(sin y)σ cos y] [cos yw(y)] dy

= =

∫ π

0

[
d
dy

(sin y)σ+1

σ + 1

]
[cos yw(y)] dy, (2.11)

hich, upon integrating by parts, gives

E = M1 − =

∫ π

0

(sin y)σ+1

σ + 1
[− sin yw(y) + cos yw′(y)] dy,

M1 = =

∫ π

0

d
dy

[
(sin y)σ+1

σ + 1
cos yw(y)

]
dy, (2.12)

3 Suppose we want to regularize the HFP integral

I(t) = =

∫ b

a
|x − t|σ g(x) dx, a < t < b, σ = −(m + δ), m ∈ {1, 2, 3, . . .}, 0 < δ < 1, g ∈ Cm

[a, b].

Writing I(t) = =

∫ t
a (t − x)σ g(x) dx + =

∫ b
t (x − t)σ g(x) dx, and applying integration by parts to the regular integrals =

∫ t−ϵ
a and =

∫ b
t+ϵ , and proceeding as in

the first paragraph of Section 2, we obtain

I(t) =
(t − a)σ+1g(a) + (b − t)σ+1g(b)

σ + 1
+ I1(t),

I1(t) = =

∫ b

a
|x − t|σ+1g1(x) dx, g1(x) =

{
g ′(x)/(σ + 1) if x < t,
−g ′(x)/(σ + 1) if x > t.

Clearly, I (t) is less singular than I(t) and g ∈ Cm−1
[a, b] \ {t}.
1 1
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nd, by (2.7),

E = M1 +
1

σ + 1
Ĥσ+2(w) − F , (2.13)

here

F = =

∫ π

0

[
(sin y)σ+1

σ + 1
cos y

]
w′(y) dy

= =

∫ π

0

[
d
dy

(sin y)σ+2

(σ + 1)(σ + 2)

]
w′(y) dy. (2.14)

pplying integration by parts to the integral representing F , as before, we have

F = M2 −
1

(σ + 1)(σ + 2)
Ĥσ+2(w′′),

M2 = =

∫ π

0

d
dy

[
(sin y)σ+2

(σ + 1)(σ + 2)
w′(y)

]
dy. (2.15)

ombining now (2.11)–(2.15) in (2.10), we finally obtain

Ĥσ (w) =
σ + 1
σ + 2

Ĥσ+2(w) +
1

(σ + 2)(σ + 1)
Ĥσ+2(w′′) + M (2.16)

with

M = M1 − M2 = =

∫ π

0

d
dy
ψ(y) dy = =

∫ π

0
ψ ′(y) dy,

ψ(y) =
(sin y)σ

σ + 1

[
sin 2yw(y)

2
−

sin2 yw′(y)
σ + 2

]
when 0 ≤ y ≤ π . (2.17)

e now need to show that M = 0.
Let us express M in the form

M = =

∫ π/2

0
ψ ′(y) dy + =

∫ π

π/2
ψ ′(z) dz.

Making the change of variable z = y + π in the second integral, we obtain

M = =

∫ π/2

0
ψ ′(y) dy + =

∫ 0

−π/2
ψ ′(y + π ) dy. (2.18)

bserving now that, because sin 2y, sin2 y, w(y), and w′(y) are all π-periodic, we have from (2.17) that

ψ(y + π ) =
(− sin y)σ

σ + 1

[
sin 2yw(y)

2
−

sin2 yw′(y)
σ + 2

]
when −π/2 ≤ y ≤ 0,

nd, therefore, (2.18) becomes

M = =

∫ π/2

−π/2
ψ̂ ′(y) dy,

ψ̂(y) =
| sin y|σ

σ + 1

[
sin 2yw(y)

2
−

sin2 yw′(y)
σ + 2

]
when −π/2 ≤ y ≤ π/2. (2.19)

ecause ψ̂ ′(y) has a nonintegrable singularity (only) at y = 0, we must analyze

Λ(ϵ) =

[
=

∫
−ϵ

−π/2
+=

∫ π/2

ϵ

]
ψ̂ ′(y) dy

= [ψ̂(π/2) − ψ̂(−π/2)] + [ψ̂(−ϵ) − ψ̂(ϵ)], ϵ > 0.

ince ψ̂(y) is π-periodic, ψ̂(π/2) − ψ̂(−π/2) = 0. Therefore,

Λ(ϵ) = ψ̂(−ϵ) − ψ̂(ϵ)

=
(sin ϵ)σ+1

σ + 1

(
sin ϵ
σ + 2

[w′(ϵ) − w′(−ϵ)] − (cos ϵ)[w(ϵ) + w(−ϵ)]
)
,

nd we choose to express this as

Λ(ϵ) = ϵσ+2A (ϵ) + ϵσ+1A (ϵ),
1 2

5
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w

w
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C

w

i

T

T

ith

A1(ϵ) =
1

(σ + 1)(σ + 2)

(
sin ϵ
ϵ

)σ+2

[w′(ϵ) − w′(−ϵ)],

A2(ϵ) = −
1

σ + 1

(
sin ϵ
ϵ

)σ+1

(cos ϵ)[w(ϵ) + w(−ϵ)].

Clearly, in a neighborhood of ϵ = 0, A1 ∈ C m̂−1 and A2 ∈ C m̂ because w ∈ C m̂. Expanding A1(ϵ) and A2(ϵ) in their Maclaurin
series with remainders, we obtain

Λ(ϵ) = ϵσ+2
[m̂−2∑

i=0

αiϵ
i
+ O(ϵm̂−1)

]
+ ϵσ+1

[m̂−1∑
i=0

βiϵ
i
+ O(ϵm̂)

]
as ϵ → 0+,

=

m̂−1∑
i=0

γiϵ
σ+1+i

+ O(ϵσ+1+m̂) as ϵ → 0+,

with appropriate constants αi, βi, and γi. We now observe that, because σ = −(m + δ), 0 < δ < 1, each of the terms
involving ϵσ+1+i, i = 0, 1, . . . , m̂ − 1, tends either to infinity or to zero as ϵ → 0+; therefore, we discard all of them.
The remainder term O(ϵσ+1+m̂) tends to zero since σ + 1 + m̂ ≥ 1 − δ > 0. We have thus proved that M = 0. Therefore,
(2.16) becomes

Ĥσ (w) =
σ + 2
σ + 1

Ĥσ+2(w) +
1

(σ + 1)(σ + 2)
Ĥσ+2(w′′), (2.20)

hich, by (2.8)–(2.9), gives (2.4)–(2.5). This completes the proof of the theorem. ■

Using Theorem 2.1, we now tackle the task of regularizing the HFP integrals described in (1.1). The point here is
that the two HFP integrals Hσ (t; ũ0) [with ũ0(x) ≡ u(x)] and Hσ+2(t; ũ1) in (2.4) differ essentially in the strengths of the
singularities at x = t of their respective integrands; the former has a singularity of the form |x − t|σ , while the latter
has a (weaker) singularity of the form |x − t|σ+2. They also differ in the smoothness properties of the respective ũi(x);
u0 ∈ C m̂(R) while ũ1 ∈ C m̂−2(R). These facts enable us to apply Theorem 2.1 to Hσ+2(t; ũ1) in (2.4)–(2.5), the end result
being

Hσ+2(t; ũ1) = Hσ+4(t; ũ2),

where

ũ2(x) =
σ + 4
σ + 3

ũ1(x) +
θ2

(σ + 3)(σ + 4)
ũ′′

1(x).

learly, with ũ1(x) as in (2.5), ũ2(x) has the following structure:

ũ2(x) =

2∑
k=0

βσ ,2,kθ
2ku(2k)(x),

here

βσ ,2,0 =
(σ + 2)(σ + 4)
(σ + 1)(σ + 3)

,

βσ ,2,1 =
(σ + 2)2 + (σ + 4)2

(σ + 1)(σ + 2)(σ + 3)(σ + 4)
,

βσ ,2,2 =
1

(σ + 1)(σ + 2)(σ + 3)(σ + 4)
.

Repeating this process enough times depending on σ , we arrive at a regular integral representing Hσ (t; u), as described
n the next theorem that can be proved by induction.

heorem 2.2. With σ = −(m + δ), m ∈ {1, 2, 3, . . .} and 0 < δ < 1, let

r =

⌊
m + 1

2

⌋
⇒ m =

{
2r if m even
2r − 1 if m odd

⇒ m̂ = 2r. (2.21)

hen, provided u ∈ C2r (R), there holds

Hσ (t; u) = Hσ+2r (t;Uσ ), Uσ (x) = ũr (x) =

r∑
βσ ,r,kθ

2ku(2k)(x), (2.22)

k=0

6
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w

a

R
t

ith appropriate constants βσ ,r,k that depend only on σ , but not on u(x) and T . In addition,

σ + 2r =

{
−δ if m even,
1 − δ if m odd,

⇒ σ + 2r > −1, (2.23)

nd, therefore, Hσ+2r (t; ũr ) is a regular integral. Note that both m and r are determined uniquely by σ as in

m = ⌊|σ |⌋ and r =

⌊
⌊|σ |⌋ + 1

2

⌋
.

emark. Note that the condition u ∈ C2r (R) already implies that u ∈ C m̂(R). This enables us to apply Theorem 2.1 r
imes. Thus, (2.22) is obtained by applying Theorem 2.1 r times, as follows:

Hσ (t; ũ0) = Hσ+2(t; ũ1) = Hσ+4(t; ũ2) = · · · = Hσ+2r−2(t; ũr−1) = Hσ+2r (t; ũr ).

3. Construction of Hσ(t; u) via Fourier series

3.1. Preliminaries

Going back to (1.1), we realize that, provided u(x) is sufficiently differentiable on R, Hσ (t; u) is a T -periodic function
of t . This prompts us to study its Fourier series

∑
∞

q=−∞
hσ ,qeq(t) in the interval [0, T ], where

eq(x) ≡ exp (i2qπx/T ), q = 0,±1,±2, . . . . (3.1)

As will become clear shortly, working with the functions exp (i2qπx/T ) is much more convenient than working with
sin(2qπx/T ) and cos(2qπx/T ).

We now present a complete study of Hσ (t; eq) for all q.

Theorem 3.1.

1. For all σ < −1, σ ̸∈ Z, and for all q, there exist constants Mσ ,q independent of t, such that

Hσ (t; eq) = Mσ ,qeq(t), q = 0,±1,±2, . . . , (3.2)

with

Mσ ,q = (−1)q
T
2σ

Γ (σ + 1)
Γ (σ/2 + 1 + q)Γ (σ/2 + 1 − q)

= Mσ ,−q. (3.3)

2. In addition, for q = 0, 1, 2, . . ., the Mσ ,q can be computed recursively as follows:

Mσ ,0 =
T
2σ

Γ (σ + 1)
[Γ (σ/2 + 1)]2

; Mσ ,q+1 =
q − σ/2

q + 1 + σ/2
Mσ ,q, q = 0, 1, 2, . . . . (3.4)

Thus, knowledge of only Γ (σ + 1) and Γ (σ/2 + 1) suffices for computing all of the Mσ ,q.
3. Finally, the sequence {|Mσ ,q|}

∞

q=0 is monotonically increasing.

Proof. We start by making the change of variable of integration y = π (x − t)/T in Hσ (t; eq) and proceed as in (2.6). We
observe that with u(x) = eq(x), we have w(y) = êq(y)eq(t), where êq(y) = ei2qy and is π-periodic. Hence, by (2.6)–(2.8),

Hσ (t; eq) =
[
θ Ĥσ (̂eq)

]
eq(t) ⇒ Mσ ,q = θ Ĥσ (̂eq). (3.5)

We have thus proved (3.2).
We now apply (2.20) to Ĥσ (̂eq) and obtain

Ĥσ (̂eq) =
σ + 2
σ + 1

Ĥσ+2 (̂eq) +
1

(σ + 1)(σ + 2)
Ĥσ+2 (̂e′′

q )

=
σ + 2
σ + 1

Ĥσ+2 (̂eq) +
(i2q)2

(σ + 1)(σ + 2)
Ĥσ+2 (̂eq)

=
(σ + 2 + 2q)(σ + 2 − 2q)

(σ + 1)(σ + 2)
Ĥσ+2 (̂eq)

= 4
(σ/2 + 1 + q)(σ/2 + 1 − q)

(σ + 1)(σ + 2)
Ĥσ+2 (̂eq). (3.6)

We next analyze the integral representation of Ĥσ (̂eq). By (2.7), and by the fact that | sin y|σ sin(2qy) is odd,

=

∫ π/2

| sin y|σ sin(2qy) dy = 0 = =

∫ π

(sin y)σ sin(2qy) dy = 0,

−π/2 0

7
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nd, therefore,

Ĥσ (̂eq) = =

∫ π/2

−π/2
| sin y|σ cos(2qy) dy = =

∫ π

0
(sin y)σ cos(2qy) dy.

By [16, §3.631(8)], for the regular integral
∫ π
0 (sin y)c cos(2qy) dy, with c > −1, we have∫ π

0
(sin y)c cos(2qy) dy = (−1)q

π

2c(c + 1)
1

B(c/2 + 1 + q, c/2 + 1 − q)
,

here

B(a, b) =
Γ (a)Γ (b)
Γ (a + b)

(Euler Beta function).

For convenience, we rewrite this as∫ π

0
(sin y)c cos(2qy) dy = (−1)q

π

2c

Γ (c + 1)
Γ (c/2 + 1 + q)Γ (c/2 + 1 − q)

≡ R(c, q). (3.7)

ere we have invoked Γ (c + 2) = (c + 1)Γ (c + 1). Note that even though the integral
∫ π
0 (sin y)c cos(2qy) dy is not

egular, hence not defined, when c < −1, the quantity R(c, q) is defined for all c ̸= −1,−2, . . .. [R(c, q) is not defined for
= −1,−2, . . ., because the factor Γ (c + 1) has poles at these values of c.]
Comparing (3.3) with (3.7), we see that what we need to show is that Mσ ,q = θR(σ , q). We prove, by induction on j, that

3.3) is true for Mσ+2r−2j,q, j = 0, 1, 2, . . .. First, because σ + 2r > −1 by Theorem 2.2, hence the integral representation
f Mσ+2r,q is regular, we realize that Mσ+2r,q = θR(σ + 2r, q), hence (3.3) is true for Mσ+2r,q. We have thus shown the
alidity of (3.3) for j = 0. To complete the proof, it is sufficient to assume that the assertion for j = r − 1 is correct and

show that it is correct also for j = r . This amounts to showing that if (3.3) is true for Mσ+2,q then it is true for Mσ ,q. For all
this, it is sufficient to work with the HFP integrals Ĥσ (̂eq) and Ĥσ+2 (̂eq). Thus, we assume that (3.3) is valid for Ĥσ+2 (̂eq),
and we have

Ĥσ+2 (̂eq) = (−1)q
π

2σ+2

Γ (σ + 3)
Γ (σ/2 + 2 + q)Γ (σ/2 + 2 − q)

.

y repeated use of Γ (z + 1) = zΓ (z), this can be re-expressed as

Ĥσ+2 (̂eq) = (−1)q
π

2σ+2

(σ + 2)(σ + 1)Γ (σ + 1)
[(σ/2 + 1 + q)Γ (σ/2 + 1 + q)][(σ/2 + 1 − q)Γ (σ/2 + 1 − q)]

.

ubstituting this into (3.6), and multiplying by θ , we obtain (3.3). This completes the proof of part 1.
The proof of (3.4) in part 2 follows directly from (3.3).
The proof of part 3 follows from Eq. (3.4) and from the fact that⏐⏐⏐⏐Mσ ,q+1

Mσ ,q

⏐⏐⏐⏐ =

⏐⏐⏐⏐ q − σ/2
q + 1 + σ/2

⏐⏐⏐⏐ > 1, q = 0, 1, 2, . . . , because σ < −1.

e leave the details to the reader. ■

We next study the behavior of the Mσ ,q as q → ±∞.

heorem 3.2. The Mσ ,q satisfy the asymptotic equality

Mσ ,q ∼ K |q|−σ−1 as q → ±∞, K = −
T
2σ

Γ (σ + 1)
Γ (−σ/2 − 1)Γ (σ/2 + 2)

.

hus, when σ = −(m + δ) with m = 1, 2, . . ., and 0 < δ < 1,

Mσ ,q = O(|q|m+δ−1) as q → ±∞; m − 1 < m + δ − 1 < m.

herefore, when σ < −1, |Mσ ,q| → ∞ as q → ±∞.

roof. We start with the representation of Mσ ,q with q > 0, as given in (3.3). Letting σ/2 + 1 = a for convenience, we
eed to study the product Γ (a + q)Γ (a − q). Now

Γ (a − q) = (−1)q−1Γ (−a)Γ (1 + a)
Γ (q + 1 − a)

.

herefore,

Mσ ,q = −
T
2σ

Γ (σ + 1)
Γ (−a)Γ (1 + a)

Γ (q + 1 − a)
Γ (q + a)

∼ Kq1−2a as q → ∞.

Here we have used the fact that Γ (x + c) ∼ Γ (x) xc as x → ∞. ■
8
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We will make use of Theorem 3.2 when studying the convergence properties of our numerical quadrature formulas.
In the next theorem, we show the connection between Mσ ,q and the βσ ,r,k that we introduced in Theorem 2.2.

Theorem 3.3. The scalars βσ ,r,k in (2.22) are related to the Mσ ,q as in

Mσ ,q =

[ r∑
k=0

(−1)kβσ ,r,k (2q)2k
]
Mσ+2r,q. (3.8)

Proof. By Theorem 2.2, and the fact that e(s)q (x) = (i2qπ/T )seq(x), we have

Hσ (t; eq) = Hσ+2r

(
t;

r∑
k=0

βσ ,r,kθ
2ke(2k)q

)

= Hσ+2r

(
t;

[ r∑
k=0

(−1)kβσ ,r,k(2q)2k
]
eq

)

=

[ r∑
k=0

(−1)kβσ ,r,k(2q)2k
]
Hσ+2r (t; eq).

The result in (3.8) follows by recalling that

Hσ (t; eq) = Mσ ,qeq(t) and Hσ+2r (t; eq) = Mσ+2r,qeq(t)

and that eq(t) ̸= 0 for all t . ■

3.2. Fourier series for Hσ+2r (t; u(s)), s = 0, 1, . . .

In the sequel, we will be dealing with the Fourier series of the function u(x), namely,

u(x) ∼

∞∑
q=−∞

cqei2qπx/T , cq =
1
T

∫ T

0
u(x)e−i2qπx/T dx, (3.9)

which converges [to u(x)] absolutely and uniformly provided u(x) is T -periodic and differentiable on R. We will also
onsider the Fourier series of u(s)(x), s = 1, 2, . . ., namely,

u(s)(x) ∼

∞∑
q=−∞

c(s)q ei2qπx/T , c(s)q =
1
T

∫ T

0
u(s)(x)e−i2qπx/T dx = (i2q/θ )scq. (3.10)

We will deal with functions u(x) in three different classes:

1. u(x) is in the Hölder class CM+1,α(R), 0 < α ≤ 1. Thus u(s)(x), s = 0, 1, . . . ,M , are all continuous and T -periodic in
R, and u(M+1)(x) is in the Hölder class C0,α(0, T ), that is, |u(M+1)(x) − u(M+1)(y)| ≤ C |x − y|α for all x, y ∈ [0, T ] and
for some constant C > 0. Then the Fourier coefficients cq of u(x) are such that, for all s = 0, 1, . . . ,M ,

c(s)q = O(|q|−M−α−1+s) as q → ±∞. (3.11)

2. u(x) is in C∞(R). We now have for all s = 0, 1, . . .,

c(s)q = O(|q|−λ) as q → ±∞ ∀ λ > 0. (3.12)

3. As a function of the complex variable z, u(z) is analytic in the infinite strip Dρ ,

Dρ = {z ∈ C : |Im z| < ρ}. (3.13)

In this case, we have for all s = 0, 1, . . .,

|c(s)q | = O(e−2|q|πρ̃/T ) as q → ±∞ ∀ ρ̃ ∈ (0, ρ), (3.14)

Of course, now u ∈ C∞(R) as well, but the result in (3.14) is much stronger and more informative than that in
(3.12).

We now construct Hσ+2r (t; u(s)) in terms of the Fourier series representation of u(s)(x), s = 0, 1, . . . ,M .
We begin with u(0)(x) = u(x). By the fact that | sin( π (x−t)

T )|
σ+2r

is absolutely integrable everywhere and because the
Fourier series of u(x) converges to u(x) absolutely and uniformly everywhere, there holds

Hσ+2r (t; u) = Hσ+2r

(
t;

∞∑
cqeq

)
=

∞∑
cqHσ+2r (t; eq),
q=−∞ q=−∞

9
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hich, by (3.2), becomes

Hσ+2r (t; u) =

∞∑
q=−∞

cqMσ+2r,qeq(t). (3.15)

ecalling also that c(s)q = (i2q/θ )scq for q ̸= 0, with s = 1, 2, . . ., we similarly have

Hσ+2r (t; u(s)) =

∞∑
q=−∞

c(s)q Mσ+2r,qeq(t) =

∞∑
q=−∞

(i2q/θ )scqMσ+2r,qeq(t). (3.16)

Clearly, the right-hand side of (3.15) is the Fourier series of Hσ+2r (t; u). Similarly, the right-hand side of (3.16) is the
Fourier series of Hσ+2r (t; u(s)) for s = 1, 2, . . ..

3.3. Fourier series for Hσ (t; u)

Following the developments above, we now proceed to the construction of the Fourier series of Hσ (t; u). We assume
that u(x) is as in the preceding subsection.

Theorem 3.4. Hσ (t; u) has the following Fourier series representation that converges absolutely and uniformly:

Hσ (t; u) =

∞∑
q=−∞

cqMσ ,qeq(t). (3.17)

Proof. We begin with the regularized Hσ (t; u) as described in Theorem 2.2. We have

Hσ (t; u) = Hσ+2r (t;Uσ ), Uσ (x) =

r∑
k=0

βσ ,r,kθ
2ku(2k)(x). (3.18)

Therefore,

Hσ (t; u) =

r∑
k=0

βσ ,r,kθ
2kHσ+2r (t; u(2k)), (3.19)

which, upon invoking (3.15)–(3.16), becomes

Hσ (t; u) =

r∑
k=0

βσ ,r,kθ
2k

∞∑
q=−∞

(i2q/θ )2kcqMσ+2r,qeq(t)

=

∞∑
q=−∞

cq

[ r∑
k=0

(−1)kβσ ,r,k(2q)2k
]
Mσ+2r,qeq(t).

Invoking now (3.8), we obtain (3.17). ■

Remarks.

1. One might think that the result in (3.17) (with σ < −1) should follow immediately by simply writing

Hσ (t; u) = =

∫ T

0

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σ( ∞∑
q=−∞

cqeq(x)
)
dx

=

∞∑
q=−∞

cq=
∫ T

0

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σ eq(x)dx
=

∞∑
q=−∞

cqMσ ,qeq(t).

Despite the fact that the (infinite) series
∑

∞

q=−∞
cqeq(x) converges to u(x) absolutely and uniformly on R, the

equality on the second line cannot be justified. The reason for this is that, when σ < −1, the integral on the
first line does not exist in the regular sense as its integrand has a nonintegrable singularity at x = t in (0, T ).

2. Since the Fourier expansion of Hσ (t; u) in (3.17) has a surprisingly simple form, to remove any suspicion concerning
the validity of (3.17), we have computed Hσ (t; u) in the numerical examples of Section 6 by a completely
different procedure that involves the application of the Richardson extrapolation process (see [17, Chapter 1]) to a
10
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generalization of the Euler–Maclaurin expansion for HFP integrals derived by the author in [14]. Our computations
confirm the validity of (3.17). We also mention that the application of Richardson extrapolation is much more
expensive compared to the numerical quadrature method we describe in the next section. For more details on this
subject, we refer the reader to the appendix to this work.

. Numerical quadrature formula for Hσ(t; u) via trigonometric interpolation

.1. Development of the numerical quadrature formula

So far, we have seen that the T -periodic (divergent) HFP integral Hσ (t; u) in (1.1) can be expressed as the regular
ntegral

Hσ+2r (t;Uσ ) =

∫ T

0

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σ+2r

Uσ (x) dx, Uσ (x) =

r∑
k=0

βσ ,r,kθ
2ku(2k)(x).

We now present a numerical quadrature method for approximating Hσ+2r (t;Uσ ) without having to approximate the
individual Hσ+2r (t; u(2k)) that form Hσ+2r (t;Uσ ).4

We proceed as follows:

• We first approximate u(x) on [0, T ] by a balanced trigonometric polynomial φn(x) of degree n that interpolates u(x)
at 2n equidistant points xn,0, xn,1, . . . , xn,2n−1. As summarized in [1, Appendix], φn(x) is of the form

φn(x) =

n∑
q=−n

′′c̃n,qeq(x), c̃n,n = c̃n,−n, (4.1)

the double prime on the summation
∑

′′ n
q=−n meaning that the terms with q = ±n are to be multiplied by 1/2, and

φn(xn,k) = u(xn,k), xn,k =
kT
2n
, k = 0, 1, . . . , 2n − 1, (4.2)

and

c̃n,q =
1
2n

2n−1∑
k=0

eq(xn,k)u(xn,k) =
1
2n

2n−1∑
k=0

e−iqkπ/nu(xn,k), −n ≤ q ≤ n. (4.3)

Note that, for c̃n,0, c̃n,n, and c̃n,−n, (4.3) gives

c̃n,0 =
1
2n

2n−1∑
k=0

u(xn,k); c̃n,n = c̃n,−n =
1
2n

2n−1∑
k=0

(−1)ku(xn,k). (4.4)

• Next, we approximate Hσ (t; u) by Hσ (t;φn). That is, our numerical quadrature formula Qσ ,n(t; u) for Hσ (t; u) is simply

Qσ ,n(t; u) = Hσ (t;φn). (4.5)

Thus, because φn(x) =
∑

′′ n
q=−nc̃n,qeq(x) is a finite sum, we can immediately write

Qσ ,n(t; u) = Hσ

(
t;

n∑
q=−n

′′ c̃n,qeq

)
=

n∑
q=−n

′′ c̃n,qHσ (t; eq), (4.6)

which, upon invoking (3.2), becomes

Qσ ,n(t; u) =

n∑
q=−n

′′ c̃n,qMσ ,qeq(t). (4.7)

Clearly, in this form, Qσ ,n(t; u) is very easy to compute once the c̃n,q have been computed.
Substituting (4.3) into (4.7) and rearranging, we also obtain Qσ ,n(t; u) as a trigonometric sum as follows:

Qσ ,n(t; u) =
1
2n

2n−1∑
k=0

[ n∑
q=−n

′′ Mσ ,qeq(t − xn,k)
]
u(xn,k). (4.8)

4 The technical tools that are necessary for the developments of this section are provided with more detail in the appendix of the paper [1] by
the author.
11
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emarks.

1. By (4.1)–(4.8), it is clear that the only input we need for computing Qσ ,n(t; u), for all t , is the set
{u(xn,0), u(xn,1), . . . , u(xn,2n−1)}, which we use for computing the c̃n,q; no derivative information from u(x) is
required.

2. By (4.5) and Theorem 2.2, we have that

Qσ ,n(t; u) = Hσ (t;φn) = Hσ+2r (t;Φσ ,n),

where

Φσ ,n(x) =

r∑
j=0

βσ ,r,jθ
2jφ(2j)

n (x).

This means that our numerical quadrature formula Qσ ,n(t; u) replaces u(2j)(x) in the composition of Uσ (x) resulting
from Hσ (t; u) = Hσ+2r (t;Uσ ) by φ

(2j)
n (x). This takes place only implicitly, however, as is obvious from (4.7), since the

Mσ ,q are readily available by Theorem 3.1.
3. Even though φn(xn,k) = u(xn,k), we have only φ(2j)

n (xnk) ≈ u(2j)(xn,k), j = 1, 2, . . . , r .

4.2. Convergence of Qσ ,n(t; u)

We now turn to the study of the convergence as n → ∞ of Qσ ,n(t; u). We begin by deriving upper bounds on the
absolute errors |Qσ ,n(t; u) − Hσ (t; u)| that we express in terms of the Fourier coefficients of u(x).

We will make use of the following known facts, whose proofs can also be found in [1, Appendix], for example:

• As described above, trigonometric interpolation reproduces balanced trigonometric polynomials of degree at most
n in the following sense: if u(x) =

∑
′′ n
q=−ncqeq(x) with cn = c−n, then φn(x) ≡ u(x).

• The c̃n,q are related to the cq as in

c̃n,p = cp +

∞∑
τ=−∞

τ ̸=0

cp+2nτ . (4.9)

• In case the infinite series
∑

∞

q=−∞
cq converges absolutely, there holds∑

|p|≤n

′′

∞∑
τ=−∞

τ ̸=0

|cp+2nτ | =

∑
|q|≥n

′′
|cq|. (4.10)

By the notation
∑

′′

|p|≤n and
∑

′′

|q|≥n, we mean that the terms with p = ±n and q = ±n, respectively, are to be
multiplied by 1/2.

heorem 4.1. The absolute error |Qσ ,n(t; u) − Hσ (t; u)| can be bounded as follows:

|Qσ ,n(t; u) − Hσ (t; u)| ≤

∑
|q|≥n

′′
|cq|(|Mσ ,n| + |Mσ ,q|). (4.11)

ote that this bound is independent of t.

roof. By (3.17), (4.9), and (4.7), we have

Qσ ,n(t; u) − Hσ (t; u) =

n∑
p=−n

′′ c̃n,pMσ ,pep(t) −

∞∑
q=−∞

cqMσ ,qeq(t)

=

∑
|p|≤n

′′

(
cp +

∞∑
τ=−∞

τ ̸=0

cp+2nτ

)
Mσ ,pep(t) −

∞∑
q=−∞

cqMσ ,qeq(t)

=

∑
|p|≤n

′′

( ∞∑
τ=−∞

τ ̸=0

cp+2nτ

)
Mσ ,pep(t) −

∑
|q|≥n

′′ cqMσ ,qeq(t),

which, upon taking moduli, gives

|Qσ ,n(t; u) − Hσ (t; u)| ≤

∑
|p|≤n

′′

( ∞∑
τ=−∞

|cp+2nτ |

)
|Mσ ,p| +

∑
|q|≥n

′′
|cq∥Mσ ,q|. (4.12)
τ ̸=0

12
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o continue, we make use of the fact that, by Theorem Theorem 3.1, the sequence {|Mσ ,q|}
∞

q=0 is monotonically increasing,
which implies that max{|Mσ ,q|}

n
q=0 = |Mσ ,n|. Therefore, (4.12) becomes

|Qσ ,n(t; u) − Hσ (t; u)| ≤

(∑
|p|≤n

′′

∞∑
τ=−∞

τ ̸=0

|cp+2nτ |

)
|Mσ ,n| +

∑
|q|≥n

′′
|cq∥Mσ ,q|

=

(∑
|q|≥n

′′
|cq|

)
|Mσ ,n| +

∑
|q|≥n

′′
|cq∥Mσ ,q| by (4.10),

which gives (4.11). ■

The next theorem provides the rates at which Qσ ,n(t; u) converges to Hσ (t; u) as n → ∞ for all t ∈ R. It follows from
Theorem 4.1 and from (3.11)–(3.14) about the rates of growth of the cq as q → ±∞.

Theorem 4.2.

1. If u(x) is T -periodic and in the Hölder class CM+1,α(0, T ), and if M + α + 1 > −σ , then

|Qσ ,n(t; u) − Hσ (t; u)| = O(n−M−α−σ−1) as n → ∞. (4.13)

2. If u(x) is T -periodic and in C∞(R), then

|Qσ ,n(t; u) − Hσ (t; u)| = o(n−µ) as n → ∞ ∀µ > 0, (4.14)

that is, Qσ ,n(t; u) converges spectrally in n.
3. In case u(z) is also T-periodic and analytic in an infinite strip Dρ of the complex z-plane, with Dρ as in (3.13), then

|Qσ ,n(t; u) − Hσ (t; u)| = O(e−2nπρ̃/T ) as n → ∞ ∀ρ̃ ∈ (0, ρ), (4.15)

that is, Qσ ,n(t; u) converges exponentially in n, thus better than spectrally.

All these results are valid uniformly in t.

4.3. Exactness property of Qσ ,n(t; u)

We now state some theorems that concern the exactness properties of Qσ ,n(t; u). They can be proved exactly as the
orresponding theorems in [1, Theorems 5.3, 5.4].

heorem 4.3. The numerical quadrature formula Qσ ,n(t; u) has the following exactness property:

Qσ ,n(t; u) = Hσ (t; u) if u(x) =

n∑
q=−n

′′ cqeq(x) with cn = c−n.

In particular,

Qσ ,n(t; eq) = Hσ (t; eq) = Mσ ,qeq(t), q = 0,±1, . . . ,±(n − 1),

Qσ ,n(t; en + e−n) = Hσ (t; en + e−n) = Mσ ,nen(t) + Mσ ,−ne−n(t) = Mσ ,n[en(t) + e−n(t)].

In words, Qσ ,n(t; u) reproduces Hσ (t; u) when u(x) is a balanced trigonometric polynomial of degree at most n.

Following Theorem 4.3, which provides Qσ ,n(t; eq) for |q| ≤ n − 1, Theorem 4.4 below provides Qσ ,n(t; eq) for |q| ≥ n.

Theorem 4.4. Define the set of integers Γ as Γ = {±n,±3n,±5n, . . .}.

1. If q ∈ Γ , then q = (2j + 1)n for some integer j, and

Qσ ,n(t; eq) = Qσ ,n(t; e±n) =
1
2
[Mσ ,nen(t) + Mσ ,−ne−n(t)] =

1
2
Mσ ,n[en(t) + e−n(t)]. (4.16)

2. If q ̸∈ Γ , then there exist unique integers τ and s, |s| ≤ n − 1, such that q = 2nτ + s, and

Q (t; e ) = Q (t; e ) = M e (t). (4.17)
σ ,n q σ ,n s σ ,s s

13
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. Treatment of regular singular integrals

So far, we have dealt with the divergent integrals∫ T

0

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σu(x) dx, 0 < t < T , σ < −1, σ ̸∈ Z.

We recall that these integrals are singular and do not exist in the regular sense. They do exist in the HFP sense and we
developed numerical quadrature formulas to compute their HFPs.

We now turn to the treatment of the integrals∫ T

0

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σu(x) dx, 0 < t < T , σ > −1, σ ̸∈ Z,

which are still singular, but they exist in the regular sense hence also in the sense of HFP. This means that they need no
regularization. As will become clear, the developments of the preceding sections of this work apply to this case with only
some minor changes. We will continue to denote these integrals by Hσ (t; u). The theoretical developments of Section 3
re the key to the following results.

heorem 5.1.

1. For all σ > −1, σ ̸∈ Z, and for all q, there exist constants Mσ ,q independent of t, such that

Hσ (t; eq) = Mσ ,qeq(t), q = 0,±1,±2, . . . , (5.1)

with

Mσ ,q = (−1)q
T
2σ

Γ (σ + 1)
Γ (σ/2 + 1 + q)Γ (σ/2 + 1 − q)

= Mσ ,−q. (5.2)

2. In addition, for q = 0, 1, 2, . . ., the Mσ ,q can be computed recursively as follows:

Mσ ,0 =
T
2σ

Γ (σ + 1)
[Γ (σ/2 + 1)]2

; Mσ ,q+1 =
q − σ/2

q + 1 + σ/2
Mσ ,q, q = 0, 1, 2, . . . . (5.3)

Thus, knowledge of only Γ (σ + 1) and Γ (σ/2 + 1) suffices for computing all of the Mσ ,q.
3. Finally, the sequence {|Mσ ,q|}

∞

q=0 is monotonically decreasing, and the Mσ ,q satisfy

Mσ ,q ∼ K |q|−σ−1 as q → ±∞, K = −
T
2σ

Γ (σ + 1)
Γ (−σ/2 − 1)Γ (σ/2 + 2)

. (5.4)

Therefore, when σ > −1, |Mσ ,q| → 0 as q → ±∞.

roof. The proof of (5.1) is exactly the same as that of (3.2). The proof of (5.2) follows directly from (3.7). The proof of
he rest of the theorem is the same as the rest of the proofs of Theorems 3.1 and 3.2. ■

The following theorem concerns the Fourier series representation of Hσ (t; u). As before, we assume that u(x) is either
n the Hölder class CM+1,α(R), 0 < α ≤ 1, or is in C∞(R), or, as a function of the complex variable z, u(z) is analytic in
he infinite strip Dρ , with Dρ as in (3.13),

heorem 5.2. Let u(x) have the Fourier series representation

u(x) ∼

∞∑
q=−∞

cqeq(t), cq =
1
T

∫ T

0
eq(x)u(x) dx.

Then Hσ (t; u) has the following Fourier series representation that converges absolutely and uniformly:

Hσ (t; u) =

∞∑
q=−∞

cqMσ ,qeq(t). (5.5)

roof. The proof follows from the facts that (i) | sin π (x−t)
T |

σ
is absolutely integrable on [0, T ] because σ > −1, and (ii)

he Fourier series of u(x) converges to u(x) on [0, T ] absolutely and uniformly. ■

In view of all this, we propose to approximate Hσ (t; u) precisely as described in Section 4. That is, we approximate u(x)
n [0, T ] by the trigonometric interpolant φn(x) =

∑
′′ n
q=−nc̃n,qeq(x), and approximate Hσ (t; u) by Qσ ,n(t; u) = Hσ (t;φn).

Thus

Qσ ,n(t; u) =

n∑
′′ c̃n,qMσ ,qeq(t). (5.6)
q=−n

14
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e then have the following theorem that concerns the error Qσ ,n(t; u) − Hσ (t; u) and the convergence of Qσ ,n(t; u) as
→ ∞. Its proof is almost identical to that of Theorem 4.1, where we also take into account that |Mσ ,0| = max{|Mσ ,q|}

∞

q=0
and that limq→±∞ Mσ ,q = 0.

Theorem 5.3. Concerning Qσ ,n(t; u), we have

|Qσ ,n(t; u) − Hσ (t; u)| ≤

∑
|q|≥n

′′
|cq|(|Mσ ,0| + |Mσ ,q|). (5.7)

heorem 5.4.

1. If u(x) is T -periodic and in the Hölder class CM+1,α(0, T ), then

|Qσ ,n(t; u) − Hσ (t; u)| = O(n−M−α) as n → ∞. (5.8)

2. If u(x) is T -periodic and in C∞(R), then

|Qσ ,n(t; u) − Hσ (t; u)| = o(n−µ) as n → ∞ ∀µ > 0, (5.9)

that is, Qσ ,n(t; u) converges spectrally in n.
3. In case u(z) is also T-periodic and analytic in an infinite strip Dρ of the complex z-plane, with Dρ as in (3.13), then

|Qσ ,n(t; u) − Hσ (t; u)| = O(e−2nπρ̃/T ) as n → ∞ ∀ρ̃ ∈ (0, ρ), (5.10)

that is, Qσ ,n(t; u) converges exponentially in n, thus better than spectrally.

All these results are valid uniformly in t.

6. Numerical examples

We now apply the numerical method we have just developed to the integrals Hσ (t; u), with T = 2π (hence θ = 2)
and

u(x) =

∞∑
q=0

ηq cos qx = Re
1

1 − ηeix
=

1 − η cos x
1 − 2η cos x + η2

, η real, 0 < η < 1. (6.1)

learly, u(x) is infinitely differentiable and 2π-periodic on R. Therefore, T = 2π throughout. In addition, u(x) can be
ontinued to the complex z-plane, such that u(z) is also 2π-periodic and analytic in the infinite strip Dρ in (3.13) with
= log η−1. Finally, Hσ (t; u) can be computed numerically by summing the Fourier series in (3.17) and (5.5) as follows:
e first have

c0 = 1; cq = η|q|/2, q ̸= 0.

ext, by Theorem 4.2 with σ < −1, and by Theorem 5.2 with σ > −1, and also by the fact that Mσ ,q = Mσ ,−q for all q,
e have the following Fourier series for Hσ (t; u):

Hσ (t; u) = Mσ ,0 +

∞∑
q=1

ηqMσ ,q cos qt ∀σ ̸∈ Z. (6.2)

ecalling that Mσ ,q = O(|q|−σ−1) as q → ±∞, we realize that these Fourier series converge very quickly and enable us
o compute Hσ (t; u) easily, whether σ < −1 or σ > −1.

We have applied our quadrature formulas Qσ ,n(t; u), as shown in (4.7) and (5.6), to the integrals Hσ (t; u) with (i)
= 0.5,−0.5 for regular integrals, and (ii) σ = −1.5,−2.5,−3.5,−4.5 for HFP integrals, using quadruple-precision

rithmetic with roundoff unit u = 1.93 × 10−34.
The results of our computations, with t = 1 in all cases, are shown in Tables 6.1–6.6. Note that because u(z) is analytic

in the infinite strip Dρ with ρ = log η−1, we have that the error [Qσ ,n(t; u)−Hσ (t; u)] tends to zero as n → ∞ exponentially
n n like ηn by Theorems 4.2 and 5.4. Our numerical results confirm this amply for the different values of η. Finally, we
ecall that Qσ ,n(t; u) requires only 2n evaluations of u(x) and no evaluations of derivatives of u(x).

. Application of Qσ,n(t; ·) to general singular integrals and integral equations

.1. Application of Qσ ,n(t; ·) to singular integrals

So far, we have dealt with the HFP integrals Hσ (t; u) = =

∫ T
0 f (x, t) dx, where f (x, t) is T -periodic in x and is expressed

s

f (x, t) =

⏐⏐⏐⏐ sin π (x − t)
⏐⏐⏐⏐σu(x) dx, 0 < t < T , σ ̸∈ Z, (7.1)
T
15
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Table 6.1
Numerical results for Qσ ,n(t; u) with σ = 0.5, t = 1, and u(x) as in (6.1). Here En(η = c) =

|Qσ ,n(t; u) − Hσ (t; u)|/|Hσ (t; u)| for η = c . [In this case, Hσ (t; u) is defined in the regular sense.]
n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

10 6.78D−14 1.46D−10 1.29D−08 3.13D−07 4.32D−06
20 3.64D−24 8.37D−18 4.49D−14 1.98D−11 2.19D−09
30 4.87D−34 4.98D−25 1.56D−19 1.24D−15 1.29D−12
40 4.87D−34 2.48D−32 4.51D−25 6.39D−20 6.25D−16
50 0.00D+00 0.00D+00 6.71D−31 1.72D−24 1.60D−19
60 4.87D−34 1.64D−34 3.31D−34 1.51D−28 1.25D−22
70 4.87D−34 3.28D−34 3.31D−34 3.17D−32 2.54D−25
80 0.00D+00 0.00D+00 3.31D−34 1.67D−34 2.63D−28
90 6.50D−34 0.00D+00 3.31D−34 3.34D−34 1.94D−31
100 6.50D−34 8.20D−34 3.31D−34 1.00D−33 0.00D+00
110 1.62D−34 1.64D−34 0.00D+00 1.33D−33 5.03D−34
120 3.25D−34 1.64D−34 6.62D−34 8.34D−34 3.36D−34

Table 6.2
Numerical results for Qσ ,n(t; u) with σ = −0.5, t = 1, and u(x) as in (6.1). Here En(η = c) =

|Qσ ,n(t; u) − Hσ (t; u)|/|Hσ (t; u)| for η = c . [In this case, Hσ (t; u) is defined in the regular sense.]
n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

10 1.11D−12 2.41D−09 2.18D−07 5.30D−06 6.14D−05
20 1.27D−22 2.88D−16 1.53D−12 6.72D−10 7.47D−08
30 1.08D−32 2.60D−23 7.97D−18 6.25D−14 6.50D−11
40 1.44D−34 1.73D−30 3.07D−23 4.29D−18 4.16D−14
50 5.78D−34 1.43D−34 5.72D−29 1.43D−22 1.30D−17
60 1.44D−34 2.85D−34 2.83D−34 1.56D−26 1.30D−20
70 1.44D−34 8.55D−34 4.24D−34 3.86D−30 3.02D−23
80 7.22D−34 4.28D−34 1.55D−33 1.83D−33 3.55D−26
90 7.22D−34 4.28D−34 2.83D−34 8.46D−34 2.94D−29
100 2.89D−34 4.28D−34 1.27D−33 9.87D−34 1.63D−32
110 1.16D−33 0.00D+00 4.24D−34 1.41D−34 1.27D−33
120 4.33D−34 1.43D−34 1.41D−34 1.41D−34 9.91D−34

Table 6.3
Numerical results for Qσ ,n(t; u) with σ = −1.5, t = 1, and u(x) as in (6.1). Here En(η = c) =

|Qσ ,n(t; u) − Hσ (t; u)|/|Hσ (t; u)| for η = c . [In this case, Hσ (t; u) is defined in the HFP sense only.]
n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

10 8.03D−11 1.73D−07 1.69D−05 5.05D−04 8.97D−03
20 1.97D−20 4.27D−14 2.37D−10 1.23D−07 2.01D−05
30 2.63D−30 5.81D−21 1.86D−15 1.71D−11 2.58D−08
40 1.07D−32 5.20D−28 9.54D−21 1.56D−15 2.18D−11
50 1.52D−32 1.26D−32 2.22D−26 6.38D−20 8.27D−15
60 2.09D−32 2.30D−32 1.40D−31 8.67D−24 1.06D−17
70 2.19D−31 2.12D−31 2.24D−31 2.48D−27 2.82D−20
80 2.08D−31 2.08D−31 2.25D−31 6.24D−31 3.77D−23
90 6.01D−32 6.07D−32 6.48D−32 7.58D−32 3.51D−26
100 1.96D−31 2.21D−31 2.68D−31 3.52D−31 2.09D−29
110 2.33D−31 2.24D−31 2.44D−31 3.19D−31 5.46D−31
120 1.29D−31 1.05D−31 8.95D−32 9.21D−32 1.26D−31

whether σ < −1 or σ > −1, u(x) being T -periodic and sufficiently differentiable on R. We also mentioned that the
auchy-like transforms Jσ (t;w) on the unit circle described in Section 1 are actually Hσ (t; ŵ), where ŵ(x) = i2σ eixw(eix).

We now consider HFP integrals =

∫ T
0 f (x, t) dx whose integrands f (x, t) have algebraic singularities of the form |x − t|σ ,

whether σ < −1 or σ > −1, and σ ̸∈ Z, but are not expressed necessarily as in (7.1).

Example 7.1. Consider the HFP integral Iσ (t; f ) = =

∫ T
0 f (x, t) dx, where f (x, t) is T -periodic in x ∈ R and, for x ∈ [0, T ], it

has the form

f (x, t) = g(x, t)|x − t|σ , 0 < t < T , (7.2)

such that g(x, t) is sufficiently differentiable as a function of x on [0, T ]. In addition, t is being held fixed throughout.
[Note that g(x, t) is not T -periodic since |x − t|σ is not.]
16
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Table 6.4
Numerical results for Qσ ,n(t; u) with σ = −2.5, t = 1, and u(x) as in (6.1). Here En(η = c) =

|Qσ ,n(t; u) − Hσ (t; u)|/|Hσ (t; u)| for η = c . [In this case, Hσ (t; u) is defined in the HFP sense only.]
n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

10 1.90D−09 3.84D−06 2.26D−04 3.38D−03 2.69D−02
20 9.88D−19 1.95D−12 6.30D−09 1.59D−06 1.13D−04
30 2.00D−28 4.01D−19 7.38D−14 3.28D−10 2.14D−07
40 1.50D−31 4.79D−26 5.06D−19 3.96D−14 2.40D−10
50 2.34D−30 2.12D−30 1.47D−24 2.00D−18 1.10D−13
60 6.46D−30 5.87D−30 9.47D−30 3.38D−22 1.82D−16
70 3.52D−29 3.07D−29 1.89D−29 1.11D−25 5.51D−19
80 2.77D−29 2.52D−29 1.53D−29 2.70D−29 8.38D−22
90 1.05D−29 9.78D−30 5.69D−30 3.25D−30 8.73D−25
100 3.36D−29 3.59D−29 2.59D−29 1.67D−29 5.72D−28
110 4.07D−29 3.53D−29 2.26D−29 1.48D−29 1.17D−29
120 1.85D−29 1.05D−29 3.85D−30 8.40D−31 8.88D−32

Table 6.5
Numerical results for Qσ ,n(t; u) with σ = −3.5, t = 1, and u(x) as in (6.1). Here En(η = c) =

|Qσ ,n(t; u) − Hσ (t; u)|/|Hσ (t; u)| for η = c . [In this case, Hσ (t; u) is defined in the HFP sense only.]
n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

10 1.34D−08 1.86D−05 9.27D−04 1.45D−02 1.38D−01
20 1.47D−17 1.93D−11 5.08D−08 1.31D−05 1.09D−03
30 4.52D−27 5.96D−18 8.91D−13 3.99D−09 3.05D−06
40 5.90D−30 9.53D−25 8.13D−18 6.40D−13 4.50D−09
50 9.73D−29 5.95D−29 2.95D−23 3.98D−17 2.51D−12
60 3.70D−28 2.18D−28 2.07D−28 8.35D−21 5.34D−15
70 1.70D−27 9.76D−28 4.86D−28 3.18D−24 1.85D−17
80 1.10D−27 6.64D−28 3.23D−28 7.78D−28 3.19D−20
90 4.67D−28 2.95D−28 1.35D−28 7.84D−29 3.72D−23
100 1.96D−27 1.41D−27 8.44D−28 5.54D−28 2.68D−26
110 2.45D−27 1.39D−27 7.35D−28 5.04D−28 4.85D−28
120 8.13D−28 1.56D−28 4.60D−29 9.87D−29 1.19D−28

Table 6.6
Numerical results for Qσ ,n(t; u) with σ = −4.5, t = 1, and u(x) as in (6.1). Here En(η = c) =

|Qσ ,n(t; u) − Hσ (t; u)|/|Hσ (t; u)| for η = c . [In this case, Hσ (t; u) is defined in the HFP sense only.]
n En(η = 0.1) En(η = 0.2) En(η = 0.3) En(η = 0.4) En(η = 0.5)

10 1.36D−07 2.76D−04 6.68D−03 1.25D−01 6.75D+00
20 3.15D−16 5.75D−10 7.13D−07 2.14D−04 1.00D−01
30 1.47D−25 2.67D−16 1.87D−11 9.74D−08 4.14D−04
40 5.47D−28 5.72D−23 2.27D−16 2.07D−11 8.08D−07
50 5.48D−27 4.68D−27 1.03D−21 1.58D−15 5.45D−10
60 2.61D−26 2.13D−26 8.26D−27 4.13D−19 1.49D−12
70 1.18D−25 9.35D−26 2.18D−26 1.82D−22 5.91D−15
80 6.26D−26 5.28D−26 1.19D−26 4.65D−26 1.16D−17
90 2.90D−26 2.62D−26 5.45D−27 3.71D−27 1.52D−20
100 1.78D−25 1.81D−25 5.09D−26 3.91D−26 1.21D−23
110 2.31D−25 1.82D−25 4.57D−26 3.73D−26 2.06D−25
120 5.30D−26 1.05D−26 1.26D−26 1.58D−26 9.35D−26

Let us define the function u(x, t) via

g(x, t)|x − t|σ =

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σu(x, t).
Therefore,

u(x, t) =

(
T
π

)σ g(x, t)⏐⏐sinc( π (x−t)
T

)⏐⏐σ and u(t, t) =

(
T
π

)σ
g(t, t),

where

sinc(z) =
sin z

z
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s the sinc function, which is defined and is easily computable everywhere and is positive for z ∈ (−π, π ), with sinc(0) = 1.
learly, u(x, t) is T -periodic and has no singularity and is as differentiable as g(x, t). In addition, it can be computed easily

when g(x, t) is available or can be computed easily.

Example 7.2. Next, we consider the HFP integral Iσ (t; f ) = =

∫ T
0 f (x, t) dx, where f (x, t) is T -periodic in x ∈ R and has the

general form

f (x, t) = g(x, t)|ψ(x) − ψ(t)|σ , 0 < t < T , (7.3)

such that g(x, t) and ψ(x) are sufficiently differentiable as functions of x and are also T -periodic. In addition ψ ′(x) ̸= 0
on [0, T ].

Let us define the function ψ[x, t] as follows:

ψ[x, t] =

⎧⎨⎩
ψ(x) − ψ(t)

x − t
if x ̸= t,

ψ ′(t) if x = t.

Then, we can write

f (x, t) =

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σu(x, t),
where

u(x, t) =

(
T
π

)σ ⏐⏐⏐⏐ ψ[x, t]

sinc( π (x−t)
T )

⏐⏐⏐⏐σ g(x, t) and u(t, t) =

(
T
π

|ψ ′(t)|
)σ

g(t, t).

t is easy to verify that u(x, t) is T -periodic and has no singularity and is as differentiable as g(x, t). In addition, it can be
computed easily when g(x, t) is available or can be computed easily.

7.2. Application of Qσ ,n(t; ·) to singular integral equations

Finally, the approach to the solution of linear integral equations with strongly singular kernels that we developed in
[1, Section 7] can be applied here too. We now consider an integral equation of the form

λw(t) + =

∫ T

0
G(x, t)w(x) dx = a(t), t ∈ [0, T ], (7.4)

which is related to Example 7.2.
Here the constant λ and the functions G(x, t) and a(x) are known; w(x) is the unknown function, hence is the required

solution to this equation. G(x, t) is usually some sort of Green’s function with an algebraic singularity of the form |x − t|σ

when x, t ∈ (0, T ), with σ < −1 and σ ̸∈ Z, and a(x) and w(x) are T -periodic and sufficiently differentiable on R.
Here we consider the case where (i) G(x, t) = g(x, t)|ψ(x) − ψ(t)|σ , g(x, t) being T -periodic in x and t and sufficiently

differentiable on R, and (ii) ψ(x) is T -periodic and sufficiently differentiable on R, as in Example 7.2. Additional conditions
may have to be imposed on G(x, t) and/or a(x) to ensure uniqueness of solution; we will skip this issue below.

We now define the function u(x, t) as the solution to the equation

G(x, t)w(x) =

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σu(x, t).
After some simple manipulation, we obtain

u(x, t) = N(x, t)w(x), N(x, t) =

(
T
π

)σ
g(x, t)

⏐⏐⏐⏐ ψ[x, t]

sinc( π (x−t)
T )

⏐⏐⏐⏐σ .
Clearly, N(x, t) is T -periodic and sufficiently differentiable on R and

N(t, t) =

(
T
π

|ψ ′(t)|
)σ

g(t, t).

We now turn to the numerical solution of the integral equation in (7.4), which we can now write as

λw(t) + =

∫ T

0

⏐⏐⏐⏐ sin π (x − t)
T

⏐⏐⏐⏐σu(x, t) dx = a(t), t ∈ [0, T ],

hence also as

λw(t) + H (t; u(·, t)) = a(t) ⇒ λw(t) + H (t;N(·, t)w(·)) = a(t), t ∈ [0, T ].
σ σ
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irst, we set xn,k = kT/(2n), k = 0, 1, . . . , 2n − 1, and replace Hσ (t;N(·, t)w(·)) by Qσ ,n(t;N(·, t)w(·)). Next, we replace
(x, t) = N(x, t)w(x) by φn(x, t), its trigonometric interpolant at the 2n points xn,k, and replace w(xn,k) everywhere by the

approximation w̃n,k. Finally, we set t = xn,j, j = 0, 1, . . . , 2n − 1, everywhere. This results in the following 2n equations
in the 2n unknowns w̃n,k:

λw̃n,j +
1
2n

2n−1∑
k=0

[ n∑
q=−n

′′ Mσ ,qeq(xn,j − xn,k)
]
N(xn,k, xn,j)w̃n,k = a(xn,j), 0 ≤ j ≤ 2n − 1. (7.5)

Here we have invoked (4.8). Since the underlying numerical quadrature formula Qσ ,n(t;N(·, t)w(·)) has high accuracy, we
expect the w̃n,k to approximate the w(xn,k) with high accuracy too.

Data availability

No data was used for the research described in the article.

Appendix. Hσ(t; u) Via Richardson extrapolation

Let us assume that u ∈ C∞(R) and let us express Hσ (t; u), σ ̸∈ Z, in the form

Hσ (t; u) = I[f ] = =

∫ T

0
f (x) dx, f (x) = g(x)|x − t|σ , 0 < x, t < T , (A.1)

where g(x) is defined via g(x)|x − t|σ =
⏐⏐ sin π (x−t)

T

⏐⏐σu(x), thus
g(x) =

(
π

T

)σ ⏐⏐⏐⏐sinc(π (x − t)
T

)⏐⏐⏐⏐σu(x). (A.2)

Note that we have written f (x) and g(x) and not f (x, t) and g(x, t) since t ∈ (0, T ) is being held fixed. Of course, neither
g(x) nor |x − t|σ is T -periodic even though f (x) is; nevertheless, g ∈ C∞

[0, T ]. Now, by T -periodicity of f (x), we can
express (A.1) also as

Hσ (t; u) = I[f ] = =

∫ t+T

t
f (x) dx (A.3)

and that f (x) is singular at the new endpoints x = t and x = t + T and is infinitely differentiable on (t, t + T ), with
asymptotic expansions

f (x) ∼

∞∑
k=0

g (k)(t)
k!

(x − t)σ+k as x → t+, (A.4)

f (x) ∼

∞∑
k=0

(−1)k
g (k)(t)
k!

(t + T − x)σ+k as x → (t + T )−. (A.5)

Let us now define the trapezoidal sum Ť (h) for the integral =

∫ t+T
t f (x) dx as

Ť (h) = h
m−1∑
j=1

f (t + jh), h =
T
m
, m = 1, 2, . . . . (A.6)

Clearly, Ť (h) is well-defined since f (x) is infinitely differentiable on (t, t + T ).
Applying Theorem 2.1 of Sidi [14] to Ť (h) in (A.6), along with (A.3) and the asymptotic expansions of f (x) in (A.4)–(A.5),

ecalling also that σ ̸∈ Z, we have the generalized Euler–Maclaurin expansion

Ť (h) ∼ =

∫ t+T

t
f (x) dx + 2

∞∑
k=0

g (2k)(t)
(2k)!

ζ (−σ − 2k)hσ+2k+1 as h → 0 (or m → ∞), (A.7)

here ζ (z) is the Riemann Zeta function. Of course, when σ > −1, =

∫ t+T
t f (x) dx is a regular integral and (A.7) remains

alid.
We now choose positive integers 1 ≤ m0 < m1 < m2, . . ., and set hi = T/mi, and apply the Richardson

xtrapolation process to the sequence {Ť (hi)}∞i=0 to approximate I[f ] = =

∫ t+T
t f (x) dx; see Sidi [17, Chapter 1]. We define

ur approximations A(j)
n to I[f ] via the linear equations

Ť (hi) = A(j)
n +

n−1∑
αkhσ+2k+1

i , i = j, j + 1, . . . , j + n, (A.8)

k=0
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a
i

a

d
s

R

ssuming that we do not want to bother with g(x) and its derivatives. Here αk are additional unknowns that are of no
nterest.

The sequences of approximations {A(j)
n }

∞

n=0 (with fixed j, such as j = 0) have the best convergence properties. For
example, when the integers mi are chosen as mi = 2i, i = 0, 1, . . ., the sequences {A(j)

n }
∞

n=0 converge to =

∫ T
0 f (x) dx spectrally,

s shown in Sidi [17, Theorem 1.5.4]. [In this case, the cost of determining A(j)
n involves 2j+n evaluations of f (x).]

The A(j)
n can be determined, without having to solve the linear equations in (A.8), via the author’s (recursive)

W-algorithm [18] (see also [17, Section 7.2]) as follows:

1. For j = 0, 1, . . ., set

M (j)
0 =

Ť (hj)
hσ+1
j

, N (j)
0 =

1
hσ+1
j

.

2. For j = 0, 1, . . ., and n = 1, 2, . . ., compute

M (j)
n =

M (j+1)
n−1 − M (j)

n−1

h2
j+n − h2

j
, N (j)

n =
N (j+1)

n−1 − N (j)
n−1

h2
j+n − h2

j
.

3. For j = 0, 1, . . ., and n = 0, 1, . . ., compute

A(j)
n =

M (j)
n

N (j)
n
.

Note that we need to compute only the trapezoidal sums Ť (hi), j ≤ i ≤ j + n. We do not need to compute g(x) and its
erivatives. Mere knowledge of the powers hσ+2k+1, k = 0, 1, . . ., in the generalized Euler–Maclaurin expansion (A.7) is
ufficient.
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